Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper presents selected results of KOBO extrusion process of circular profile ϕ10 mm from aluminum alloy 2099. The main aim of the performed research was to determine the influence of the oscillation frequency of a die on the magnitude of extrusion force. During the process such parameters, as extrusion force, rate of stem and frequency of die oscillation were recorded; oscillating angle of a die was constant and equal ±8°. The die oscillation frequency was changeable in performed tests in the range of 2 ÷ 7 Hz. The obtained results allowed to determine the relation between the maximum extrusion force and the die oscillation frequency during extrusion of aluminum 2099 alloy.

The paper focuses on the experimental analysis of mechanical characteristics of the KOBO process. Basing on the recorded force versus stem position, three stages of KOBO extrusion process were determined, i.e. initialization, stabilization and uniform extrusion. Points separating these stages are two inflection points of recorded diagram. The analysis of each stage was made basing on the results of force diagrams and literature data.

Go to article

Authors and Affiliations

T. Balawender
ORCID: ORCID
M. Zwolak
ORCID: ORCID
Ł. Bąk
Download PDF Download RIS Download Bibtex

Abstract

Numerical simulations of the KOBO extrusion process are presented in this paper. The coupled thermomechanical Eulerian-Lagrangian approach was applied for the three-dimensional finite element model. The dynamic explicit Euler forward method was used in numerical calculations. The elastic-plastic Chaboche model assuming isotropic and kinematic hardening under variable temperature conditions was applied to describe the behaviour of the material under cyclic loading. In numerical computations Chaboche material model implemented in commercial software, as well as the proprietary one written as FORTRAN procedure were tested. The numerical results present the stress and strain distributions in the extruded material, as well as an increase of temperature due to the plastic work and friction. The shape of plastic strain zones was verified experimentally. The approach presented in the paper is a promising numerical tool to simulate the KOBO process.
Go to article

Authors and Affiliations

Marta Wójcik
ORCID: ORCID
A. Skrzat
1
ORCID: ORCID

  1. Rzeszow University of Technology, Faculty of Mechanical Engineering and Aeronautics, Department of Materials Forming and Processing, 8 Powstańców Warszawy Ave., 35-959 Rzeszów, Poland

This page uses 'cookies'. Learn more