Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the two-temperature thermoelasticity model is proposed to a specific problem of a thermoelastic semi-infinite solid. The bounding plane surface of the semi-infinite solid is considered to be under a non-Gaussian laser pulse. Generalized thermoelasticity analysis with dual-phase-lags is taken into account to solve the present problem. Laplace transform and its inversion techniques are applied and an analytical solution as well as its numerical outputs of the field variables are obtained. The coupled theory and other generalized theory with one relaxation time may be derived as special cases. Comparison examples have been made to show the effect of dual-phase-lags, temperature discrepancy, laser-pulse and laser intensity parameters on all felids. An additional comparison is also made with the theory of thermoelasticity at a single temperature.

Go to article

Authors and Affiliations

Ashraf M. Zenkour
Ahmed E. Abouelregal
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this paper is to study the thermoviscoelastic interactions in a homogeneous, isotropic semi-infinite solid under two-temperature theory with heat source. The Kelvin-Voigt model of linear viscoelasticity which describes the viscoelastic nature of the material is used. The bounding plane surface of the medium is subjected to a non-Gaussian laser pulse. The generalized thermoelasticity theory with dual phase lags model is used to solve this problem. Laplace transform technique is used to obtain the general solution for a suitable set of boundary conditions. Some comparisons have been shown in figures to estimate the effects of the phase lags, viscosity, temperature discrepancy, laser-pulse and the laser intensity parameters on all the studied fields. A comparison was also made with the results obtained in the case of one temperature thermoelasticity theory.

Go to article

Authors and Affiliations

Mohamed I.A. Othman
Ahmed E.E. Abouelregal

This page uses 'cookies'. Learn more