Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Prolonged exposure to UV radiation, and ever-increasing life expectancy, mean that an increasing proportion of the population suffers from clouding of the intraocular lens. Nowadays, the performance of intraocular implantation procedures is commonplace. Unfortunately, with the increasing number of operations, the number of postoperative complications is also increasing. One way to avoid complications may be to use an intraocular implant that has been immersed in a solution containing silver nanoparticles. As part of the study, four selected intraocular implants – that are available on the ophthalmic market – were tested. In order to investigate the effect of silver particles on the optical properties of the implants, tests were carried out using a UV-VIS spectrophotometer. Two series of implants were tested: before and after immersion in a silver solution. The implants were immersed for a period of 7 days. It was found that the presence of silver particles does not have a negative impact on the translucency of the implants.
Go to article

Authors and Affiliations

K. Jeż
1
ORCID: ORCID
M. Gacek
1
ORCID: ORCID
M. Nabiałek
1
ORCID: ORCID
L. Toth
2
ORCID: ORCID
M. Pike-Biegunski
3

  1. Czestochowa University of Technology, Faculty of Production Engineering and Materials Technology, Department of Physics, 19 Armii Krajowej Str., 42-200 Częstochowa, Poland
  2. Óbuda University, Bánki Donát Faculty of Mechanical and Safety Engineering, Material Science Department, 1081, Népszínház 8, Budapest, Hungary
  3. Nano Koloid sp. z o. o, Hoża 62/37, 00-682 Warszawa, Poland
Download PDF Download RIS Download Bibtex

Abstract

This article describes a novel approach to measure responsivity of a FET-based sub-THz detector using on-wafer probes to directly feed a bare antenna-less detecting device. Thus, the approach eliminates the need to know beforehand the detector’s effective aperture, which can be a source of large variation between responsivity measurements of various FET-based detectors often cited in the literature. It seems that the presented method can be useful at making direct comparisons between responsivity of various devices (e.g., MOSFETs, HEMTs etc.). As a demonstration, the sub-THz responsivity of a pHEMT device fabricated using a commercial GaAs process has been measured in a WR-3 frequency band. Additionally, the results have been compared against data obtained using an alternative approach. The verification method consisted in integrating exactly the same device with a broad-band antenna and a carefully selected high-resistivity silicon lens and comparing its performance with that of a commercial calibrated detector based on Schottky diodes.

Go to article

Authors and Affiliations

P. Kopyt
B. Salski
A. Pacewicz
P. Zagrajek
J. Marczewski
Download PDF Download RIS Download Bibtex

Abstract

Millimeter-wave (mm-wave) transmitters are often fabricated using advanced technology and require a sophisticated manufacturing facility. Access to such technologies is often very limited and difficult to gain particularly at the initial stage of research. Therefore, to increase the accessibility of mm-wave transmitters, this study proposes a design that can be assembled in a standard microwave laboratory from commercially available or externally ordered components. The transmitter demonstrated in this paper operates above 100 GHz and is based on a lowtemperature co-fired ceramic board in which the antenna array, microstrip lines, and power-supply lines are fabricated in a single process. Different technologies are used to assemble the module, e.g., wire-bonding, soldering, and wax adhesion. Advantages and disadvantages of the proposed design are given based on experimental evaluation of the prototype. Although the performance of the developed transmitter is not as good as that of the similar modules available in the recent literature, the results confirm the feasibility of a mm-wave transmitter that is assembled without employing advanced technologies and superior machinery.
Go to article

Authors and Affiliations

Paweł Bajurko
1
Jakub Sobolewski
1
Grzegorz Bogdan
1
Konrad Godziszewski
1
Jacek Marczewski
2
Jan Kulawik
2
Michał Widlok
3
Yevhen Yashchyshyn
1

  1. Warsaw University of Technology, Institute of Radioelectronics and Multimedia Technology, Warsaw, Poland
  2. Łukasiewicz Research Network, Institute of Microelectronics and Photonics, Warsaw, Poland
  3. SIRC Sp. z o.o., Gdynia, Poland

This page uses 'cookies'. Learn more