Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Investment casting combined with the additive manufacturing technology enables production of the thin-walled elements, that are geometrically complex, precise and can be easy commercialized. This paper presents design of aluminium alloy honeycombs, which are characterized with light structure, internal parallel oriented channels and suitable stiffness. Based on 3D printed pattern the mould was prepared from standard ceramic material subjected subsequently to appropriate heat treatment. Into created mould cavity with intricate and susceptible structure molten AC 44200 aluminium alloy was poured under low pressure. Properly designed gating system and selected process parameters enabled to limit the shrinkage voids, porosities and misruns. Compression examination performed in two directions showed different mechanisms of cell deformation. Characteristic plateau region of stress-strain curves allowed to determine absorbed energy per unit volume, which was 485 or 402 J/mm3 depending on load direction. Elaborated technology will be applied for the production of honeycomb based elements designated for energy absorption capability.

Go to article

Authors and Affiliations

K. Naplocha
ORCID: ORCID
A. Dmitruk
ORCID: ORCID
P. Mayer
J.W. Kaczmar
Download PDF Download RIS Download Bibtex

Abstract

In determining the effects of actions when designing road structures, the influence of the loads caused by the buffeting of the passing vehicles (high-cycle forces) is neglected. Taking into account the fatigue load, they can have a very large impact on the assessment of the load capacity. The subject of analysis is the pressure and velocity distributions around a truck. At the current stage of the work, it can be concluded that the gusts of passing trucks affect the dynamics of the gantry structure and the elements suspended on it, such as platforms or boards. There is a strong suction force. It is possible to simplify the model in such a way that the board and the wind move with the speed of the vehicle while the truck remains stationary. Due to the lack of reliable guidelines for strength calculations of such structures, advanced Computational Fluid Dynamics (CFD) tools were used. This paper also presents a shaking table built by the authors for dynamic loading of structural models. It describes the construction of the shaking table and the kind of movement made by the table deck. It also shows a scheme of the table deck suspension on linear bearings, as well as a scheme of the table motion system.
Go to article

Authors and Affiliations

Agnieszka Padewska-Jurczak
1
ORCID: ORCID
Dawid Cornik
1
ORCID: ORCID
Ryszard Walentynski
1
ORCID: ORCID
Maciej Wiśniowski
1
ORCID: ORCID
Piotr Szczepaniak
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Civil Engineering, Department of Mechanics and Bridges, ul. Akademicka 5, 44-100 Gliwice, Poland

This page uses 'cookies'. Learn more