Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The results of mechanical reclamation of waste moulding sands with furfuryl resin and activators of new generation are presented.

The aim of the research described in this study was to determine what effect the addition of reclaim obtained in the process of dry mechanical reclamation could have on the properties of furan sands.

The sand supplied by one of the domestic foundries was after the initial reclamation subjected to a two-step proper reclamation

process. The following tests were carried out on the obtained reclaim: pH, S and N content, loss on ignition and comprehensive

sieve analysis. The obtained reclaim was next used as a component of moulding sands with furfuryl resin, wherein it formed 50%

and 80% of the base moulding material, respectively. The strength properties of the ready sand mixtures (bending strength Rg u and tensile strength Rm u ) were determined after the hardening time of 0.5, 1, 2, 4 and 24 hours.

Go to article

Authors and Affiliations

J. Kamińska
E. Basińska
M. Angrecki
A. Palma
Download PDF Download RIS Download Bibtex

Abstract

A technology of sands with water glass hardened by liquid esters is a cheap and ecologic method of producing moulding sands. Due to these advantages, this technology is still very important in several foundry plants for production of heavy iron and steel castings. Reclamation of the mixed moulding and core sands generates significant amounts of dusts, which require further treatments for their reuse. The results of investigations of a pressureless granulation of dusts generated in the dry mechanical reclamation process of the mixture consisting in app. 90 % of moulding sands from the Floster S technology and in 10 % of core sands with phenolic resin resol type, are presented in the hereby paper. Investigations were aimed at obtaining granulates of the determined dimensional and strength parameters. Granules were formed from the mixture of dusts consisting of 75 mass% of dusts after the reclamation of sands mixture and of 25 mass% of dusts from bentonite sands processing plant. Wetted dusts from bentonite sands were used as a binding agent allowing the granulation of after reclamation dusts originated from the mixed sands technology.
Go to article

Authors and Affiliations

J. Dańko
J. Kamińska
Download PDF Download RIS Download Bibtex

Abstract

Increasing demands are imposed on foundries to enforce the manufacture of castings characterized by tight dimensional tolerances, high surface finish and total absence of casting defects. To face these challenges, castings are increasingly made in loose self-hardening sands with furfuryl resin, commonly known as furan sands. In the group of self-hardening sands with synthetic resins, loose self-hardening sands with furfuryl resin enjoy the greatest popularity. The sand mixtures based on furan resins are usually subjected to mechanical reclamation. The consumption of binder and hardener and thus the cost of the sand depend on the quality of reclaim, and mainly on the dust removal degree.

The planned tightening of the environmental protection regulations in the EU countries, including limiting the content of free furfuryl alcohol in resins and reducing the emission of furfuryl alcohol, formaldehyde and BTEX compounds at workplaces, necessitated the development of a new generation of eco-friendly furfuryl resins that have recently appeared on the market.

The main aim of this article was to determine the effect of reclaim content on the sand parameters, such as bending strength, tensile strength, bench life, gas-forming tendency and loss on ignition. Tests were carried out with reclaim content in the sand mixture varying from 50 to 90%. The reclaim obtained by dry mechanical reclamation was supplied by one of the domestic foundries.

The results showed that the highest mechanical properties were obtained in sands containing 60% of the reclaim.

Go to article

Authors and Affiliations

J. Kamińska
ORCID: ORCID
S. Puzio
ORCID: ORCID
M. Angrecki
ORCID: ORCID
A. Łoś

This page uses 'cookies'. Learn more