Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 14
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The current work presents and describes the test bench for analyzing the lost foam process, especially measuring of the pressure of gases in the gas gap and continuous measuring of the rate of rise of the bath level when pouring the liquid metal into the mould. A series of preliminary research was carried out on the bench which was aimed at determining the influence of the basic parameters of the process, i.e. the density of the styrofoam pattern, thickness of the refractory coating applied on the pattern, kind of the alloy and the temperature of pouring on the mould cavity by the liquid metal and the pressure of gases in the gas gap.

Go to article

Authors and Affiliations

R. Kaczorowski
T. Pacyniak
P. Just
Download PDF Download RIS Download Bibtex

Abstract

This work presents the technology of making foam plastics patterns used in casting as well as the final shaping stand. The analysis of the sintering process was carried out aiming at determining the influence of the pressure and the time of sintering on the flexural strength properties. The analysis of the research results confirmed that when the sintering pressure grows to the value of Pa =1,7 bar the flexural strength also increases, when the pressure value is higher than that, the degradation of the material takes place and the strength properties decrease.

Go to article

Authors and Affiliations

T. Pacyniak
K. Buczkowska
W. Bogus
Download PDF Download RIS Download Bibtex

Abstract

This work presents the analysis of the final shaping process of the patterns aimed at determining the influence of the pressure and the time of sintering on the resistance to bending. The analysis of the research results proved that when the pressure of the sintering rises and reaches Ps=2.1 bar the resistance to bending increases, above this level of the pressure the resistance value starts decreasing. The time of styrofoam sintering at which the highest bending resistance values were obtained is ts=90 s. When the sintering pressure is less than 2 bar prolongation of the time of sintering over 90 s causes a slight increase in the resistance, however, at higher pressures prolongation of the time of sintering causes submelting of the styrofoam pattern.

Go to article

Authors and Affiliations

T. Pacyniak
K. Buczkowska
Download PDF Download RIS Download Bibtex

Abstract

The article presents analysis of the influence of ingate size on the Lost Foam casting process. In particular, analysis of simulation tests has been carried out to determine the ingate size influence on the rate of filling of the mould cavity, pressure in the gas gap and size of the gas gap. A specially prepared mathematical model of the process and an original calculation algorithm were used in simulation tests of full-mould casting. The tests have indicated that the increase of the ingate size results in the increase of filling rate and increase of pressure of gases in the gas gap. However, significant influence on mould cavity filling occurs only when the ingate size is less than ~1 cm2.

.

Go to article

Authors and Affiliations

T. Pacyniak
R. Kaczorowski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the optimization of master alloy amount for the high nodular graphite yield (80-90%) in cast iron obtain in lost foam process. The influence of the gating system configuration and the shape of the reaction chamber, the degree of spheroidisation cast iron was examined. Research has shown that the, optimal of master alloy amount of 1.5% by mass on casting iron. The degree of spheroidisation is also influenced by the gating system configuration. The best spheroidisation effect was obtained for liquid cast iron was fed into the reaction chamber from the bottom and discharged from the top.
Go to article

Authors and Affiliations

P. Just
T. Pacyniak
R. Kaczorowski
Download PDF Download RIS Download Bibtex

Abstract

The article presents an analysis of the applicability of the Replicast CS process as an alternative to the investment casting process,

considered in terms of the dimensional accuracy of castings. Ceramic shell moulds were based on the Ekosil binder and a wide range of

ceramic materials, such as crystalline quartz, fused silica, aluminosilicates and zirconium silicate. The linear dimensions were measured

with a Zeiss UMC 550 machine that allowed reducing to minimum the measurement uncertainty.

Go to article

Authors and Affiliations

A. Karwiński
R. Biernacki
A. Soroczyński
R. Haratym
Download PDF Download RIS Download Bibtex

Abstract

Presented are results of a preliminary research on determining a possibility to use microwave radiation for drying casting protective

coatings applied on patterns used in the lost foam technology. Taken were measurements of permittivity εr and loss factor tgδ at 2.45 GHz,

as well as attempts were made of microwave drying of a protective coating based on aluminium silicates, applied on shapes of foamed

polystyrene and rigid polymeric foam. Time and results of microwave drying were compared with the results obtained by drying at 50 °C

by the traditional method commonly used for removing water from protective coatings. Analysis of the obtained drying kinetics curves

demonstrated that selection of proper operation parameters of microwave equipment permits the drying time to be significantly shortened.

Depending on kind of the pattern material, drying process of a protective coating runs in a different way, resulting in obtaining different

quality of the dried coating.

Go to article

Authors and Affiliations

B. Opyd
K. Granat
Download PDF Download RIS Download Bibtex

Abstract

Disposable foundry models constitute an increasingly important role in a unitary large-size foundry. These models have many benefits, but technologies using such materials require an understanding of degradation kinetics at the time of filling. The studies presented in the article determine the size of the polystyrene combustion products used for disposable foundry models. The results were obtained by carrying out the combustion process of the polystyrene model in a special combustion chamber, in different configurations. The pressures generated during thermal degradation vary depending on process parameters such as model density or the use of an additional adhesive binder. The results of laboratory tests may suggest what values of pressure are generated when filling in full-mold and lost foam technologies. The studies provide a prelude to further analysis of materials used for disposable foundry models and quantitative evaluation of their thermal degradation products for computer simulation.
Go to article

Bibliography

[1] Pacyniak, T. (2013). Full mold casting. Selected aspects. Lodz: A Series of Monographs, Lodz University of Technology. (in Polish)
[2] Pysz, S., Żółkiewicz, Z., Żuczek, R., Maniowski, Z., Sierant, Z., Młyński, M. (2010). Simulation studies of mould filling conditions with molten metal in evaporative pattern technology. The Transactions of the Foundry Research Institute. 10(3), 27-37.
[3] Shroyer, H.F. (1958). Cavityless Casting Mold and Method of Making Same. U.S. Patent No. 2,830, 343.
[4] Kaczorowski, R., Just, P. & Pacyniak, T. (2013), Test bench for analyzing the lost foam process. Archives of Foundry Engineering. 13(1), 57-62.
[5] Buczkowska, K., Just, P., Świniarska, J. & Pacyniak, T. (2015). The effect of the type, the ceramic coating thickness and the pattern set density on the degree of gas porosity in casting. Archives of Foundry Engineering. 15(2), 7-12.
[6] Żmudzińska, M., Faber, J., Perszewska, K., Żółkiewicz, Z., Maniowski, Z. (2011). Studying the emission of products formed during evaporation of polystyrene patterns in the lost foam process in terms of the work environment. The Transactions of the Foundry Research Institute. 50(1), 23-33.
[7] Żółkiewicz, Z., Baliński, A., Żółkiewicz M. (2017). Characteristics of the thermal process of polystyrene model gasification. The Transactions of the Foundry Research Institute. 17(3), 201 - 210.
[8] Mocek, J. & Chojecki, A. (2014). Gas atmosphere formed in casting by full mold process. Archives of Metallurgy and Materials. 59(3), 1045-1049.
[9] Żółkiewicz, Z. & Żółkiewicz, M. (2010). Characteristic properties of materials for evaporative patterns. Archives of Foundry Engineering. 10(spec. 3), 289-292.
[10] Pielichowski, J., Sobczak, J.J., Żółkiewicz, Z., Hebda, E., Karwiński, A. (2011). The thermal analysis of polystyrene foundry model. The Transactions of the Foundry Research Institute. 11(1), 15-21.
Go to article

Authors and Affiliations

M. Jureczko
1 2
Dariusz Bartocha
ORCID: ORCID

  1. Department of Foundry Engineering, Silesian University of Technology, 7 Towarowa Str. 44-100 Gliwice, Poland
  2. Joint Doctoral School, Silesian University of Technology, 2A Akademicka Str. 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article presents investigation results of the effect of sand fluidization on the structure and mechanical properties of AlSi9 aluminum alloy. Castings were made by lost foam casting process with sand fluidization in mold at the stages of their solidification and cooling. Sand fluidization was achieved by blowing sand bed with compressed air in a foundry container. The metallographic study was carrying out on samples cut from different sections of the castings. Mechanical properties were determined on specimens made from cast samples. Microstructural analysis showed that sand fluidization increases the cooling rate, as a result, the main microstructural components of the alloy – SDAS, eutectic silicon and needles of the rich-iron phase – decrease. Moreover, in different sections of the casting structure is more uniform. With an increasing the air flow rate, a greater refinement of the structure is observed. Through the use of sand fluidization, the mechanical properties of LFC aluminum alloys increase to the level of gravity die castings.

Go to article

Authors and Affiliations

Pavlo Kaliuzhnyi
Download PDF Download RIS Download Bibtex

Abstract

The article describes the design of a proven technology for the production of metal foam and porous metal by the foundry. Porous metal formed by infiltrating liquid metal into a mould cavity appears to be the fastest and most economical method. However, even here we cannot do without the right production parameters. Based on the research, the production process was optimised and subsequently a functional sample of metal foam with an irregular internal structure - a filter - was produced. The copper alloy filter was cast into a gypsum mould using an evaporable model.
Furthermore, a functional sample of porous metal with a regular internal structure was produced - a heat exchanger. The aluminium alloy heat exchanger was cast into a green sand mould using preforms. Also, a porous metal casting with a regular internal structure was formed for use as an element in deformation zones. This aluminium alloy casting was made by the Lost Foam method. The aim is therefore to ensure the production of healthy castings, which would find use in the field of filtration of liquid metal or flue gases, in vehicles in the field of shock energy absorption and also in energy as a heat exchanger.
Go to article

Bibliography

[1] Lefebvre, L.P., Banhart, J. & Dunand, D. (2008). Porous metals and metallic foams: current status and recent developments. Advanced Engineering Materials. 10(9), 775-787.
[2] Banhart, J. (2001). Manufacture, characterisation and application of cellular metals and metal foams. Progress in Materials Science. 46(6), 559-632.
[3] Banhart, J. (2007). Metal Foams - from Fundamental Research to Applications [online], URL: < https://www.helmholtz-berlin.de/media/media/spezial/people/banhart/html/B-Conferences/b097_banhart2007.pdf>.
[4] Gaillard, Y., Dairon, J., & Fleuriot, M. (2011). Porous materials: innovations with many uses. Slévárenství. 11-12, roč. LIX, 374-378. (in Czech).
[5] Banhart, J. (2005). Aluminium foams for lighter vehicles. International Journal of Vehicle Design. 37, Nos. 2/3, 114-125. [online]. URL: < http://www.helmholtz-berlin.de/media/media/spezial/people/banhart/html/A-Journals/open/article/a082_banhart2005.pdf>.
[6] García-Moreno, F. Commercial Applications of Metal Foams: Their Properties and Production. [online]. URL: < http://www.mdpi.com/1996-1944/9/2/85/html>.
[7] Banhart, J. Metallic Foams II: properties and application [online]. URL: < http://materialsknowledge.org/docs/ Banhart-talk2.pdf>.
[8] Landolsi, M.W. (2016). Metal foam - an innovative material. [online]. URL: < https://conceptec.net/actualites/innovations/ 111-mousse-metallique-un-materiau-innovant>. (in Czech).
[9] Lulusoso. Composite cladding panel manufacturers [online]. URL: < http://www.lulusoso.com/products/ Composite-Cladding-Panel-Manufacturers.html>.
[10] Erg Materials and Aerospace; Duocel® Foam Cells. [online]. URL: < http://www.ergaerospace.com/products/ fuel-cells.html>.
[11] Kroupová, I., Lichý, P., Ličev, L., Hendrych, J. & Souček, K. (2018). Evaluation of properties of cast metal foams with irregular inner structure. Archives of Metallurgy and Materials. 63(4), 1845-1849. ISSN 1733-3490.
[12] Kroupova, I., Bednarova, V., Elbel, T. & Radkovsky, F. (2014). Proposal of method of removal of mould material from the fine structure of metallic foams used as filters. Archives of Metallurgy and Materials. 59(2), 727-730. ISSN 1733-3490.
[13] Yamada. Y., Shimojima, K., Sakaguchi, Y., Mabuchi, M., Nakamura, M., Asahina, T., Mukai, T., Kanahashi, H. & Higashi, K. (2000). Effects of heat treatment on compressive properties of AZ91 Mg and SG91A Al foams with open-cell structure. Materials Science and Engineering: A. 280(1), 225-228. DOI: https://doi.org/ 10.1016/S0921-5093(99)00671-1.
[14] Gawdzinska, K., Chybowski, L. & Przetakiewicz, W. (2017). Study of thermal properties of cast metal-ceramic composite foams. Archives of Metallurgy and Materials. 17(4), 47-50. ISSN 1897-3310.
[15] Haack, P.D., Butcher, R.P., Kim, T. & Lu, J.T. (2001). Novel lightweight metal foam heat exchangers. porvair fuel cell technology, Inc., Department of Engineering, University of Cambridge. January, [online]. URL: < https://www.researchgate.net/publication/267721239_Novel_Lightweight_Metal_Foam_Heat_Exchangers>.
[16] Radkovský, F., Merta, V. (2020). Use of numerical simulation in production of porous metal casting. Archives of Metallurgy and Materials. 54(2), 259-261. ISSN 1580-2949. DOI: 10.17222/mit.2019.145.
[17] Radkovský, F., Gebauer, M., Kroupová, I., Lichý, P. (2017). Metal foam as a heat exchanger. In METAL 2017, Conference proceedings, 26th Anniversary International Conference on Metallurgy and Materials, Tanger Ltd., Ostrava, 24. - 26. 5. 2017, Hotel Voroněž I, Brno.
[18] Lu, T.J., Stone, H.A. & Ashby, M.F. (1998). Heat transfer in open-cell metal foams. Acta Materialia. 46(10, 12) June, 3619-3635. DOI: https://doi.org/10.1016/S1359-6454(98) 00031-7
[19] Boomsma, K., Poulikakos, D. & Zwick, F. (2003). Metal foams as compact high performance heat exchangers. Mechanics of Materials, 35(12), 1161-1176. DOI: https://doi.org/10.1016/j.mechmat.2003.02.001.
[20] Hutter, C., Büchi, D., Zuber, V. & Rohr, R. (2011). Heat transfer in metal foams and designed porous media. Chemical Engineering Science. 66(17), 1 September 2011, 3806-3814. DOI: https://doi.org/10.1016/j.ces.2011.05.005
[21] Lichý, P., Elbel, T., Kroupová, I. & Radkovský, F. (2017). Preparation and evaluation of properties of cast metallic foams with regular inner structure. Archives of Metallurgy and Materials. 62(3), 1643-1646. ISSN 1733-3490. DOI: 10.1515/amm-2017-0251.
[22] Romanek, T. (2017). Manufacturing and Properties of Cast Metallic Foams with Regular Structure, Ostrava, Diploma thesis, VSB - Technical University of Ostrava, [online]. URL: http://www.ergaerospace.com/products/fuel-cells.htm>.
[23] Radkovský, F., Gebauer, M. & Merta, V. (2018). Optimizing of metal foam design for the use as a heat exchanger. Archives of Metallurgy and Materials. 63(4), 1875-1881. ISSN 1733-3490.

Go to article

Authors and Affiliations

F. Radkovský
1
ORCID: ORCID
V. Merta
1
ORCID: ORCID
T. Obzina
1

  1. VSB - Technical University of Ostrava, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The article considers the method of obtaining reinforced castings from gray cast iron by lost foam casting. The aim of this study was to determine the microstructure formation of gray cast iron reinforced with inserts of carbon and stainless steel in this casting method. The results of the research have shown that the products of destruction of expanded polystyrene have a positive effect on the bonding formation of cast iron with reinforcing inserts. When steel wire is used as reinforcement, a decarbonized layer of cast iron is being formed around it, in which the inclusions of graphite are smaller and their quantity is less than in the main metal. Due to carburization, the surface structure of the reinforcement changes from ferrite to pearlite with cementite. Steel wire reinforcement can be effective in increasing strength and toughness of gray cast iron. The usage of stainless steel reinforcement leads to the formation of a transition layer on the part of the matrix metal. It contains ledeburite with dissolved chromium, which increase the wear resistance of cast iron.
Go to article

Authors and Affiliations

Pavlo Kaliuzhnyi
1
Inna Shalevska
1
ORCID: ORCID
Vadym Sliusarev
1
ORCID: ORCID

  1. Department of Physical Chemistry of Foundry Processes, Physico-Technological Institute of Metals and Alloys of the National Academy of Sciencesof Ukraine, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The aging granulate is to activate the blowing agent during the manufacturing process to granulate models can re-expand and shape the

model of well-sintered granules, smooth surface and a suitable mechanical strength.

The article presents the results of studies which aim was to determine the optimum time for aging pre-foamed granules for pre-selected

raw materials.

The testing samples were shaped in an autoclave, with constant parameters sintering time and temperature. Samples were made at 30

minute intervals. Models have been subjected to flexural strength and hardness.

Go to article

Authors and Affiliations

K. Buczkowska
T. Pacyniak
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of the research on the influence of the shape of reaction chamber on spheroidisation of cast iron produced with use of the inmold method. The amounts of nodular graphite precipitates in castings produced with the use of different reaction chambers have been compared.

Go to article

Authors and Affiliations

P. Just
T. Pacyniak
Download PDF Download RIS Download Bibtex

Abstract

Small additions of Cr, Mo and W to aluminium-iron-nickel bronze are mostly located in phases κi (i=II; III; IV),and next in phase α

(in the matrix) and phase γ2. They raise the temperature of the phase transformations in aluminium bronzes as well as the casts’ abrasive

and adhesive wear resistance. The paper presents a selection of feeding elements and thermal treatment times which guarantees structure

stability, for a cast of a massive bush working at an elevated temperature (650–750°C) made by means of the lost foam technology out of

composite aluminium bronze. So far, there have been no analyses of the phenomena characteristic to the examined bronze which

accompany the process of its solidification during gasification of the EPS pattern. There are also no guidelines for designing risers and

steel internal chill for casts made of this bronze. The work identifies the type and location of the existing defects in the mould’s cast. It also

proposes a solution to the manner of its feeding and cooling which compensates the significant volume contraction of bronze and

effectively removes the formed gases from the area of mould solidification. Another important aspect of the performed research was

establishing the duration time of bronze annealing at the temperature of 750°C which guarantees stabilization of the changes in the bronze

microstructure – stabilization of the changes in the bronze HB hardness.

Go to article

Authors and Affiliations

P. Just
B.P. Pisarek

This page uses 'cookies'. Learn more