Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the control design framework for the hybrid synchronization (HS) and parameter identification of the 3-Cell Cellular Neural Network. The cellular neural network (CNN) of this kind has increasing practical importance but due to its strong chaotic behavior and the presence of uncertain parameters make it difficult to design a smooth control framework. Sliding mode control (SMC) is very helpful for this kind of environment where the systems are nonlinear and have uncertain parameters and bounded disturbances. However, conventional SMC offers a dangerous chattering phenomenon, which is not acceptable in this scenario. To get chattering-free control, smooth higher-order SMC formulated on the smooth super twisting algorithm (SSTA) is proposed in this article. The stability of the sliding surface is ensured by the Lyapunov stability theory. The convergence of the error system to zero yields hybrid synchronization and the unknown parameters are computed adaptively. Finally, the results of the proposed control technique are compared with the adaptive integral sliding mode control (AISMC). Numerical simulation results validate the performance of the proposed algorithm.
Go to article

Authors and Affiliations

Nazam Siddique
1
ORCID: ORCID
Fazal ur Rehman
2
Uzair Raoof
3
Shahid Iqbal
1
Muhammad Rashad
3

  1. University of Gujrat, Gujrat, Pakistan
  2. Capital University of Science and Technology, Islamabad, Pakistan
  3. University of Lahore, Lahore, Pakistan
Download PDF Download RIS Download Bibtex

Abstract

This paper considers the problem of the accurate task space finite-time control susceptible to both undesirable disturbance forces exerted on the end-effector and unknown friction forces coming from joints directly driven by the actuators as well as unstructured forces resulting from the kinematic singularities appearing on the mechanism trajectory. We obtain a class of estimated extended transposed Jacobian controllers which seem to successfully counteract the external disturbance forces on the basis of a suitably defined task-space non-singular terminal sliding manifold (TSM) and the Lyapunov stability theory. Moreover, in order to overcome (or to minimise) the undesirable chattering effects, the proposed robust control law involves the second-order sliding technique. The numerical simulations (closely related to an experiment) ran for a mobile manipulator consisting of a non-holononic platform of (2;0) type and a holonomic manipulator of two revolute kinematic pairs show the performance of the proposed controllers and make a comparison with other well-known control schemes.
Go to article

Bibliography

  1.  J. Balleieul, “Kinematic programming alternatives for redundant manipulators,” in Proc. IEEE Int. Conf. on Robotics and Automation, IEEE, St. Louis, MO, USA, 1985, pp. 722–728.
  2.  M. Rani, N. Kumar, and H.P. Singh, “Efficient position/force control of constrained mobile manipulators,” Int. J. Dynam. Control, vol. 6, pp. 1629–1638, 2018.
  3.  W. Dong, “On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty,” Automatica, vol. 38, no. 9, pp. 1475–1484, 2002.
  4.  M. Przybyla, M. Kordasz, R. Madonski, P. Herman, and P. Sauer, “Active disturbance rejection control of a 2DOF manipulator with significant modeling uncertainty,” Bull. Pol. Acad. Sci. Tech. Sci. vol. 60, no. 3, pp. 509–520, 2012.
  5.  C. Baspinar, “On robust position/force control of robot manipu- lators with constraint uncertainties,” Proc. of the 10th IFAC Symposium on Robot Control, vol. 45, no. 22, pp. 555–560, 2012.
  6.  Z. Li and S.S. Ge, Fundamentals of modeling and control of mobile manipulators, Boca Raton, London, New York: CRC, 2013.
  7.  Z. Li, S.S. Ge, M. Adams, and W.S. Wijesoma, “Robust adaptive control of uncertain constrained nonholonomic mobile manipulators,” Automatica, vol. 44, pp. 776–784, 2008.
  8.  M. Kaczmarek, W. Domski, and A. Mazur, “Position-force control of mobile manipulator–nonadaptive and adaptive case,” Arch. Control Sci., vol. 27, no. 4, pp. 487–503, 2017.
  9.  G.D. White, R.M. Bhatt, C.P. Tang, and V.N. Krovi, “Experimental evaluation of dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator,” IEEE/ASME Trans. Mechatron. vol. 14, no. 3, pp. 349–357, 2009.
  10.  G.D. White, R.M. Bhatt, and V.N. Krovi, “Dynamic redundancy resolution in a nonholonomic wheeled mobile manipulator,” Robotica, vol. 25, no. 2, pp. 147–156, 2007.
  11.  B. Nemec and L. Zlaypah, “Force control of redundant robots in unstructured environment,” IEEE Trans. Ind. Electron. vol. 49, no. 1, pp. 233–240, 2002.
  12.  F. Inoue, T. Murakami, and K. Ohnishi, “A motion control of mobile manipulator with external force,” IEEE/ASME Trans. Mechatron. vol. 6, no. 2, pp. 137–142, 2001.
  13.  T. Shamir and Y. Yomdin, “Repeatability of redundant manipulators: Mathematical solution of the problem,” IEEE Trans. Autom. Control, vol. 33, no. 11, pp. 1004–1009, 1988.
  14.  M. Boukattaya, N. Mezghani, and T. Damak, “Adaptive motion/force control of uncertain nonholonomic mobile manipulator with estimation of unknown external force,” Multibody Sys. Dyn. vol. 44, pp. 223–250, 2018.
  15.  S. Dehghan, M. Danesh, and F. Sheikholeslam, “Adaptive hybrid force/position of robot manipulators using an adaptive force estimator in the presence of parametric uncertainty,” Adv. Rob. vol. 29, no 4, pp. 209–223, 2015.
  16.  M. Boukattaya, M. Jallouli, T. Damak, “On trajectory tracking control for nonholonomic mobile manipulators with dynamic uncertainties and external torque disturbances,” Rob. Auton. Syst. vol. 60, no. 12, pp. 1640–1647, 2012.
  17.  P. Gierlak and M. Szuster, “Adaptive position/force control for robot manipulator in contact with a flexible environment,” Rob. Auton. Syst., vol. 95, pp. 80–101, 2017.
  18.  C. Edwards and S.K. Spurgeon, Sliding mode control: Theory and Application, London, Taylor and Francis, 1998.
  19.  V.I. Utkin, Sliding Modes in Control and Optimization, Springer- Verlag, Berlin, Heidelberg, 1992.
  20.  L. Fridman, “Singularly perturbed analysis of chattering in relay control systems,” IEEE Trans. Autom. Control, vol. 47, no. 12, pp. 2079–2084, 2002.
  21.  M. Galicki, “Tracking the kinematically optimal trajectories by mobile manipulators,” J. Intell. Rob. Syst. vol. 93, pp. 635–648, 2018.
  22.  M. Galicki, “Optimal sliding control of mobile manipulators,”  Bull. Pol. Acad. Sci. Tech. Sci. vol. 67, no. 4, pp. 777–788, 2019.
  23.  G. Campion, G. Bastin, and B.D. Andrea-Novel, “Structural properties and classification of kinematic and dynamic models of wheeled mobile robots,” IEEE Transactions on Robotics and Automation, vol. 12, no. 1, pp. 47–62, 1996.
  24.  H. Seraji, “A unified approach to motion control of mobile manipulators,” Int. J. Rob. Res. vol. 17, no. 2, pp. 107–118, 1998.
  25.  H. Seraji and R. Colbaugh, “Improved configuration control for redundant robots,” J. Robotic Syst. vol. 7, no. 6, pp. 897–928, 1990.
  26.  M. Galicki, “Inverse kinematics solution to mobile manipulators” Int. J. Rob. Res. vol. 22, no. 12, pp. 1041–1064, 2003.
  27.  M. Galicki, “Finite-time control of robotic manipulators,” Automatica, vol. 51, pp. 49–54, 2015.
  28.  A.F. Filippov, Differential Equations with Discontinuous Righthand Side, Kluwer, Dordrecht, Springer Netherlands, 1988.
  29.  J. Wang and Y. Li, “Manipulation of a mobile modular manip- ulator interacting with the environment with the assistance of tactile sensing feedback,” Int. J. Humanoid Rob. vol. 8, no. 4, pp. 777–793, 2011.
  30.  D. Phong, J. Choi, W. Lee, and S. Kang, “A novel method for estimating external force: simulation study with a 4-DOF robot manipulator,” Int. J. Precis. Eng. Manuf. vol. 16, no. 4, pp. 755– 766, 2015.
  31.  C.C. Cheah, K. Lee, S. Kawamura, and S. Arimoto, “Asymptotic stability control with approximate Jacobian matrix and its application to visual servoing,” in Proc. 39th IEEE Conf. on Decision and Control, Sydney, NSW, Australia, 2000, vol. 4, pp. 3939–3944.
  32.  C.C. Cheah, “On duality of inverse Jacobian and transpose Jaco- bian in task-space regulation of robots,” in Proc. IEEE Int. Conf. on Robotics and Automation (ICRA 2006), Orlando, FL, USA, 2006, pp. 2571–2576.
  33.  S.A.A. Moosavian and E. Papadopoulos, “Modified transpose Jacobian control of robotic systems,” Automatica, vol. 43, no. 7, pp. 1226–1233, 2007.
  34.  M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, “A novel higher order sliding mode control scheme,” Syst. Control Lett. vol. 58, no. 2, pp. 102–108, 2009.
  35.  M. Defoort, T. Floquet, A. Kokosy, and W. Perruquetti, “Higher order sliding modes in collaborative robotics,” in Lecture Notes in Control and Information Sciences Book Series (LNCIS), Springer, Berlin, Heidelberg, 2017, vol. 412, pp. 409–437.
  36.  M. Galicki, “Finite-time trajectory tracking control in a task space of robotic manipulators,” Automatica, vol. 67, pp. 165– 170, 2016.
  37.  A.N. Atasi and H.K. Khalil, “Separation results for the stabilization of nonlinear systems using different high-gain observer designs,” Syst. Control Lett. vol. 39, no. 3, pp. 183–191, 2000.
  38.  A. Levant, “Higher-order sliding modes, differentiation and output-feedback control,” Int. J. Control, vol. 76, no. 9-10, pp. 924–941, 2003.
  39.  A. Levant and M. Livne, “Exact differentiation of signals with unbounded higher derivatives,” IEEE Trans. Autom. Control, vol. 57, no. 4, pp. 1076–1080, 2012.
  40.  U. Ozbay, H.T. Sahin, and E. Zergeroglu, “Robust tracking con- trol of kinematically redundant robot manipulators subject to multiple selfmotion criteria,” Robotica, vol. 26, no. 6, pp. 711– 728, 2008.
  41.  J.D. Han, Y.Q. He, and W.L. Xu, “Angular acceleration esti- mation and feedback control: An experimental investigation,” Mechatronics, vol. 17, no. 9, pp. 524–532, 2007.
Go to article

Authors and Affiliations

Mirosław Galicki
1

  1. Centrum Badan Kosmicznych Polskiej Akademii Nauk, ul. Bartycka 18A, 00-716 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In recent years there has been an increasing demand for electric vehicles due to their attractive features including low pollution and increase in efficiency. Electric vehicles use electric motors as primary motion elements and permanent magnet machines found a proven record of use in electric vehicles. Permanent magnet synchronous motor (PMSM) as electric propulsion in electric vehicles supersedes the performance compared to other motor types. However, in order to eliminate the cumbersome mechanical sensors used for feedback, sensorless control of motors has been proposed. This paper proposes the design of sliding mode observer (SMO) based on Lyapunov stability for sensorless control of PMSM. The designed observer is modeled with a simulated PMSM model to evaluate the tracking efficiency of the observer. Further, the SMO is coded using MATLAB/Xilinx block models to investigate the performance at real-time.
Go to article

Authors and Affiliations

Soundirarajan Navaneethan
1
Srinivasan Kanthalakshmi
2
S. Aandrew Baggio

  1. Department of Instrumentation and Control Systems Engineering, PSG College of Technology, Coimbatore, 641004, Tamilnadu, India
  2. Department of Electrical and Electronics Engineering, PSG College of Technology, Coimbatore, 641004, Tamilnadu, India
Download PDF Download RIS Download Bibtex

Abstract

This paper introduces a fractional-order PD approach (F-oPD) designed to control a large class of dynamical systems known as fractional-order chaotic systems (F-oCSs). The design process involves formulating an optimization problem to determine the parameters of the developed controller while satisfying the desired performance criteria. The stability of the control loop is initially assessed using the Lyapunov’s direct method and the latest stability assumptions for fractional-order systems. Additionally, an optimization algorithm inspired by the flight skills and foraging behavior of hummingbirds, known as the Artificial Hummingbird Algorithm (AHA), is employed as a tool for optimization. To evaluate the effectiveness of the proposed design approach, the fractional-order energy resources demand-supply (Fo-ERDS) hyperchaotic system is utilized as an illustrative example.
Go to article

Authors and Affiliations

Ammar Soukkou
1
Yassine Soukkou
2
Sofiane Haddad
1
Mohamed Benghanem
3
Abdelhamid Rabhi
4

  1. Renewable Energy Laboratory, Faculty of Science and Technology, Department of Electronics, University of MSBY Jijel, BP. 98, Ouled Aissa, Jijel, Algeria
  2. Research Center in Industrial Technologies CRTI, P. O. Box. 64, Cheraga 16014, Algiers, Algeria
  3. Physics Department, Faculty of Science, Islamic University of Madinah, Madinah, KSA
  4. Modeling, Information and Systems Laboratory, University of Picardie Jules Verne, Amiens, France.

This page uses 'cookies'. Learn more