Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A modified optical fibre based Mach-Zehnder interferometer was applied as a sensor to detect wiretapping in long transmission optical fibre lines. The signal consisting of short pulses (around 1 ns) was launched to the input of the interferometer based on the polarization maintaining fibres and polarization elements. When the sensing line was undisturbed, detectors registered only a single pulse. The additional two side pulses appear, if the wiretapping attempt took place. For robust detection of any alarm situation we proposed two-criteria algorithm to minimize false alarm rate. Moreover, slow environmental fluctuations were continuously monitored and compensated by polarization controllers. We measured frequency characteristics of the sensor and performed a hundred wiretapping attempts, which proved high performance of the sensor.

Go to article

Authors and Affiliations

M. Życzkowski
M. Karol
Download PDF Download RIS Download Bibtex

Abstract

Determining the dependence of phase difference modulations between light pulses in a modified Mach-Zehnder interferometer was used to develop an optical system coding the information and working as an eavesdropping sensor for an optical fibre information exchange system. The basic challenge in the system development is to maintain stable operation in changing environmental conditions, as well as to ensure optimal parameters of the phase modulator. The system was tested for various many-kilometer long transmission lines of single-mode fibres. The research was focused on achieving the normative Bit Error Rate for the system in the 100 Mbit/s range (STM-1). Such a system can be used in commercial applications for the code key secure transmission in the physical layer of the link.
Go to article

Authors and Affiliations

M. Życzkowski
M. Karol
N. Pałka
Download PDF Download RIS Download Bibtex

Abstract

Vibration is a ubiquitous phenomenon that occurs in everyday life and people are exposed to it almost all the time. Most often, vibration is measured using electromechanical devices such as piezoelectric, piezoresistive, or capacitive accelerometers. However, attention should be paid to the limitations of such vibration sensors. They cannot operate in the presence of strong electromagnetic fields. Measurements with electromechanical devices require physical contact between the sensor and the vibrating object, which is not always possible due to the design of the sensor and device. The possibility of a non-contact vibration measurement in harsh environments is provided by the technology of interferometric fibre optic sensors. This paper reports the principle of operation, design aspects, experimentation, and performance of a Mach-Zehnder interferometric setup for the measurement of vibration frequency. There are different sensing arms implemented in the interferometer: single-mode, polarization-maintaining, and tapered optical fibre. The paper emphasises the simplicity of the set-up structure and the detection capabilities based on the interferometric sensing giving the possibility of constructing a commercial vibration sensor for all industry demands.
Go to article

Authors and Affiliations

Anna T. Kurzych
1
ORCID: ORCID
Leszek R. Jaroszewicz
1
ORCID: ORCID

  1. Institute of Technical Physics, Military University of Technology, ul. Gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland

This page uses 'cookies'. Learn more