Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper addresses the macro- and microsegregation of alloying elements in the new-developed Mn-Al TRIP steels, which belong to the third generation of advanced high-strength steels (AHSS) used in the automotive industry. The segregation behaviour both in the as-cast state and after hot forging was assessed in the macro scale by OES and by EDS measurements in different structural constituents. The structural investigations were carried out using light and scanning electron microscopy. A special attention was paid to the effect of Nb microaddition on the structure and the segregation of alloying elements. The tendency of Mn and Al to macrosegregation was found. It is difficult to remove in Nb-free steels. Microsegregation of Mn and Al between austenite and ferritic structural constituents can be removed.

Go to article

Authors and Affiliations

A. Grajcar
Download PDF Download RIS Download Bibtex

Abstract

An as-cast aluminum billet with a diameter of 100 mm has been successfully prepared from aluminum scrap by using direct chill (DC) casting method. This study aims to investigate the microstructure and mechanical properties of such as-cast billets. Four locations along a cross-section of the as-cast billet radius were evaluated. The results show that the structures of the as-cast billet are a thin layer of coarse columnar grains at the solidified shell, feathery grains at the half radius of the billet, and coarse equiaxed grains at the billet center. The grain size tends to decrease from the center to the surface of the as-cast billet. The ultimate tensile strength (UTS) and the hardness values obtained from this research slightly increase from the center to the surface of the as-cast billet. The distribution of Mg, Fe, and Si elements over the cross-section of the as-cast billet is inhomogeneous. The segregation analysis shows that Si has negative segregation towards the surface, positive segregation at the middle, and negative segregation at the center of the as-cast billet. On the other hand, the Mg element is distributed uniformly in small quantities in the cross-section of the as-cast billet.
Go to article

Bibliography

[1] Raabe, D., Ponge, D., Uggowitzer, P., Roscher, M., Paolantonio, M., Liu, C., Antrekowitsch, H., Kozeschnik, E., Seidmann, D., Gault, B., De Geuser, F., Dechamps, A., Hutchinson, C., Liu, C., Li, Z., Prangnell, P., Robson, J., Shanthraj, P., Vakili, S. & Pogatscher, S. (2022). Making sustainable aluminum by recycling scrap: The science of “dirty” alloys. Progress in Materials Science. 128, 1-150, 100947. DOI:10.1016/j.pmatsci.2022.100947.
[2] Jamaly, N., Haghdadi, N. & Phillion, A.B. (2015). Microstructure, macrosegregation, and thermal analysis of direct chill cast AA5182 aluminum alloy. Journal of Materials Engineering and Performance. 24, 2067-2073. DOI: 10.1007/s11665-015-1480-7.
[3] Vieth, P., Borgert, T., Homberg, W. & Grundmeier, G. (2022). Assessment of mechanical and optical properties of Al 6060 alloy particles by removal of contaminants. Advanced Engineering Materials. 25(3), 2201081. DOI: 10.1002/adem.202201081.
[4] Wagstaff, R.S., Wagstaff, B.R. & Allanore, A. (2017). Tramp element accumulation and its effects on secondary phase particles. The Minerals, Metals & Materials Society. 1097-1103. DOI: 10.1007/978-3-319-51541-0.
[5] Soo, V.K., Peeters, J., Paraskevas, D., Compston, P., Doolan, M. & Duflou, J.R. (2018). Sustainable aluminium recycling of end-of-life products: A joining techniques perspective. Journal of Cleaner Production. 178, 119-132. DOI: 10.1016/j.jclepro.2017.12.235.
[6] Al-Helal, K., Patel, J.B., Scamans, G.M. & Fan, Z. (2020). Direct chill casting and extrusion of AA6111 aluminum alloy formulated from taint tabor scrap. Materials. 13(24), 5740, 1-11. DOI: 10.3390/ma13245740.
[7] Graedel, T.E., Allwood, J., Birat, J.P., Buchert, M., Hagelüken, C., Reck, B.K., Sibley, S.F. & Sonnemann, G. (2011). What do we know about metal recycling rates? Journal of Industrial Ecology. 15(3), 355-366. DOI: 10.1111/j.1530-9290.2011.00342.x.
[8] Silva, M.S., Barbosa, C., Acselrad, O. & Pereira, L.C. (2004). Effect of chemical composition variation on microstructure and mechanical properties of AA 6060 aluminum alloy. Journal of Materials Engineering and Performance. 13, 129–134. DOI: 10.1361/10599490418307.
[9] Al-Helal, K., Lazaro-Nebreda, Patel, J. & Scamans, G. (2021). High-shear de-gassing and de-ironing of an aluminum. Recycling. 6 (66), 2-10. https://doi.org/10.1111/j.1530-9290.2011.00342.x.
[10] Zhang, L., Gao, J., Damoah, L.N.W. & Robertson, D.G. (2012). Removal of iron from aluminum: A review. Mineral Processing and Extractive Metallurgy Review. 33(2), 99-157. DOI: 10.1080/08827508.2010.542211.
[11] Zhang, L., Lv, X., Torgerson, A.T. & Long, M. (2011). Removal of impurity elements from molten aluminum: A review. Mineral Processing and Extractive Metallurgy Review. 32(3), 150-228. DOI: 10.1080/08827508. 2010.483396.
[12] Paraskevas, D., Kellens, K., Dewulf, W. & Duflou, J.R. (2015). Environmental modelling of aluminium recycling: A Life Cycle Assessment tool for sustainable metal management. Journal of Cleaner Production. 105, 357-370. DOI: 10.1016/j.jclepro.2014.09.102.
[13] Eskin, D.G., Savran, V.I. & Katgerman, L. (2005). Effects of melt temperature and casting speed on the structure and defect formation during direct-chill casting of an Al-Cu alloy. Metallurgical and Materials Transactions A. 36, 1965-1976. DOI: 10.1007/s11661-005-0059-6.
[14] Nadella, R., Eskin, D.G., Du, Q. & Katgerman, L. (2008). Macrosegregation in direct-chill casting of aluminium alloys. Progress in Materials Science. 53(3), 421-480. DOI: 10.1016/j.pmatsci.2007.10.001.
[15] Eskin, D.G. (2014). Mechanisms and Control of Macrosegregation in DC Casting. Light Metals 2014. 855-860. DOI: 10.1002/9781118888438.ch143.
[16] Mortensen, D., M’Hamdi, M., Ellingsen, K., Tveito, K., Pedersen, L. & Grasmo, G. (2014). Macrosegregation modelling of DC-casting including grain motion and surface exudation. Light Metals 2014. 867-872. DOI: 10.1002/9781118888438.ch145.
[17] Jolly, M., & Katgerman, L. (2022). Modelling of defects in aluminium cast products. Progress in materials science. 123, 1-39. DOI: 10.1016/j.pmatsci.2021.100824
[18] Suyitno, Kool, W.H. & Katgerman, L. (2005). Hot tearing criteria evaluation for direct-chill casting of an Al-4.5 pct Cu alloy. Metallurgical and Materials Transactions A: Physical Metallurgy and Materials Science. 36(6), 1537-1546. DOI: 10.1007/s11661-005-0245-6.
[19] Eskin, D.G., Zuidema, J., Savran, V.I. & Katgerman, L. (2004). Structure formation and macrosegregation under different process conditions during DC casting. Materials Science and Engineering A. 384(1-2), 232-244. DOI: 10.1016/j.msea.2004.05.066.
[20] Lalpoor, M., Eskin, D. G., Ruvalcaba, D., Fjær, H.G., Ten Cate, A., Ontijt, N. & Katgerman, L. (2011). Cold cracking in DC-cast high strength aluminum alloy ingots: An intrinsic problem intensified by casting process parameters. Materials Science and Engineering A. 528(6), 2831-2842. DOI: 10.1016/j.msea.2010.12.040.
[21] Grandfield, J.F., Eskin, D.G, Bainbridge, I.F. (2013). Direct-chill casting of light alloys. United States of America: John Wiley & Sons, Inc., Hoboken, New Jersey. DOI: 10.1002/9781118690734.
[22] Wang, R., Zuo, Y., Zhu, Q., Liu, X. & Wang, J. (2022). Effect of temperature field on the porosity and mechanical properties of 2024 aluminum alloy prepared by direct chill casting with melt shearing. Journal of Materials Processing Technology. 307, 117687. DOI: 10.1016/j.jmatprotec. 2022.117687.
[23] Barekar, N.S., Skalicky, I., Barbatti, C., Fan, Z. & Jarrett, M. (2021). Enhancement of chip breakability of aluminium alloys by controlling the solidification during direct chill casting. Journal of Alloys and Compounds. 862, 158008. DOI: 10.1016/j.jallcom.2020.158008.
[24] ASTM E112. (2010). Standard test methods for determining average grain size E112-10. ASTM E112-10. 96(2004), 1-27. DOI: 10.1520/E0112-10.
[25] Jones, S., Rao, A.K.P., Patel, J.B., Scamans, G.M. Fan, Z. (2012). Microstructural evolution in intensively melt sheared direct chill cast Al-alloys. In the 13th International Conference on Aluminum Alloys (ICAA13) 2013, (pp. 91-96). DOI: 10.1007/978-3-319-48761-8_15.
[26] Suyitno, A., Eskin, D.G., Savran, V.I. & Katgerman, L. (2004). Effects of alloy composition and casting speed on structure formation and hot tearing during direct-chill casting of Al-Cu alloys. Metallurgical and Materials Transactions A. 35 A(11), 3551-3561. DOI: 10.1007/s11661-004-0192-7.
[27] Turchin, A.N., Zuijderwijk, M., Pool, J., Eskin, D.G. & Katgerman, L. (2007). Feathery grain growth during solidification under forced flow conditions. Acta Materialia. 55(11), 3795-3801. DOI: 10.1016/j.actamat.2007.02.030.
[28] Liu, X., Zhu, Q., Jia, T., Zhao, Z., Cui, J. & Zuo, Y. (2020). As-cast structure and temperature field of direct-chill cast 2024 alloy ingot at different casting speeds. Journal of Materials Engineering and Performance. 29(10), 6840-6848. DOI: 10.1007/s11665-020-05140-x.
[29] Tian L., Guo, Y., Li, J., Xia, F., Liang, M. & Bai, Y.(2018) Effects of solidification cooling rate on the microstructure and mechanical properties of a cast Al-Si-Cu-Mg-Ni piston alloy. Materials. 11(7), 3-11. DOI: 10.3390/ma11071230.
[30] Suyitno. (2016). Effect of composition on the microporosity, microstructure, and macrostructure in the start-up direct-chill casting billet of Al-Cu alloys. ARPN Journal of Engineering and Applied Sciences. 11(2), 962-967. https://doi.org/10.1007/s11661-004-0192-7.
[31] Zhu, C., Zhao, Z. hao, Zhu, Q. feng, Wang, G. song, Zuo, Y. bo, & Qin, G. wu. (2022). Structures and macrosegregation of a 2024 aluminum alloy fabricated by direct chill casting with double cooling field. China Foundry. 19(1), 1-8. DOI: 10.1007/s41230-022-1030-5.
[32] Zheng, X., Dong, J. & Wang, S. (2018). Microstructure and mechanical properties of Mg-Nd-Zn-Zr billet prepared by direct chill casting. Journal of Magnesium and Alloys. 6(1), 95-99. DOI: 10.1016/j.jma.2018.01.003.
[33] Arif, A.F.M., Akhtar, S.S. & Sheikh, A.K. (2009). Effect of Al-6063 billet quality on the service life of hot extrusion die: metallurgical and statistical investigation. Journal of Failure Analysis and Prevention. 9, 253-261. DOI: 10.1007/s11668-009-9231-4.
[34] Triantafyllidis, G.K., Kiligaridis, I., Zagkliveris, D.I., Orfanou, I., Spyridopoulou, S., Mitoudi-Vagourdi, E. & Semertzidou, S. (2015). Characterization of the A6060 Al alloy mainly by using the micro-hardness vickers test in order to optimize the industrial solutionizing conditions of the as-cast billets. Material. Science and Applications. 06(01), 86-94. DOI: 10.4236/msa.2015.61011.
[35] Asensio-Lozano J., Suárez-Peña, B. & Voort, G.F.V. (2014). Effect of processing steps on the mechanical properties and surface appearance of 6063 aluminium extruded products. Materials. 7(6), 4224-4242. DOI: 10.3390/ma7064224.
[36] Založnik, M. & Šarler, B. (2005). Modeling of macrosegregation in direct-chill casting of aluminum alloys: Estimating the influence of casting parameters. Materials Science and Engineering A. 413-414, 85-91. DOI: 10.1016/j.msea.2005.09.056.
Go to article

Authors and Affiliations

Kardo Rajagukguk
1 2 4
ORCID: ORCID
Suyitno Suyitno
3 4
Harwin Saptoadi
1
I. K. Indraswari Kusumaningtyas
1
Budi Arifvianto
1 4
Muslim Mahardika
1 4

  1. Department of Mechanical and Industrial Engineering, Faculty of Engineering, Universitas Gadjah Mada, Jl. Grafika 2, Yogyakarta 55281, Indonesia
  2. Department of Mechanical Engineering, Institut Teknologi Sumatera (ITERA), Jl. Terusan Ryacudu, South Lampung, Lampung 35365, Indonesia
  3. Department of Mechanical Engineering, Faculty of Engineering, Universitas Tidar, Jl. Kapten Suparman 39, North Magelang, 56116, Indonesia
  4. Center for Innovation of Medical Equipment and Devices (CIMEDs), Universitas Gadjah Mada, Jl. Teknika Utara Yogyakarta 55281, Indonesia

This page uses 'cookies'. Learn more