Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 47
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

A metamaterial absorber (MA) based sensor is designed and analysed for various important applications including pressure, temperature, density, and humidity sensing. Material parameters, as well as equivalent circuit model have been extracted and explained. After obtaining a perfect absorption (PA) at around 6.46 GHz and 7.68 GHz, surface current distributions at resonance points have been explained. Since bandwidth and applicability to different sensor applications are important for metamaterial sensor applications, we have realized distinctive sensor demonstrations for pressure, temperature, moisture content and density and the obtained results have been compared with the current literature. The proposed structure uses the changes on the overall system resonance frequency which is caused by the sensor layer’s dielectric constant that varies depending on the electromagnetic behaviour of the sample placed in. This model can be adapted to be used in sensor applications including industrial, medical and agricultural products.

Go to article

Authors and Affiliations

M. Bakır
M. Karaaslan
E. Unal
O. Akgol
C. Sabah
Download PDF Download RIS Download Bibtex

Abstract

Polychlorinated biphenyls (PCBs) are one group of persistent organic pollutants (POPs) that are of international concern because of global distribution, persistence, and toxicity. Removal of these compounds from the environment remains a very difficult challenge because the compounds are highly hydrophobic and have very low solubility in water. A 900 W domestic microwave oven, pyrex vessel reactor, pyrex tube connector and condensing system were used in this experiment. Radiation was discontinuous and ray powers were 540, 720 and 900 W. The PCBS were analyzed by GC-ECD. The application of microwave radiation and H2O2/TiO2 agents for the degradation of polychlorinated biphenyl contaminated oil was explored in this study. PCB – contaminated oil was treated in a pyrex reactor by microwave irradiation at 2450 MHz with the addition of H2O2/TiO2. A novel grain TiO2 (GT01) was used. The determination of PCB residues in oil by gas chromatography (GC) revealed that rates of PCB decomposition were highly dependent on microwave power, exposure time, ratio to solvent with transformer oil in 3:1, the optimal amount of GT01 (0.2 g) and 0.116 mol of H2O2 were used in the study. It was suggested that microwave irradiation with the assistance of H2O2/TiO2 might be a potential technology for the degradation of PCB – contaminated oil. The experiments show that MW irradiation, H2O2 oxidant and TiO2 catalyst lead to a degradation efficiency of PCBs only in the presence of ethanol. The results showed that the addition of ethanol significantly enhanced degradation efficiency of PCBs.

Go to article

Authors and Affiliations

Reza Tajik
Hasan Asilian Mohabadi
Ali Khavanin
Ahmad Jonidi Jafari
Babak Eshrati
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of research into the effect of microwave radiation on waste treatment in a reactor with a biolilrn. 2.45 GHz microwave radiation was supplied to the reactors placed inside a microwave chamber. The radiation was generated by magnetron and the amount or radiation was controlled by varying the times of alternating phases ofrudiation and treatment. The study was conducted in three arrangements of alternating phases: 7 s radiation and 10 treatment;7 s radiation and 5 min treatment: 25 s radiation and 10 min treatment. The results obtained in the study show that microwave radiation affects the process ofbiologieal waste treatment not only through heating but also through its atherrnul properties. An increase in the effectivencss of the treatment was particularly visible in the microwave action in nitrogen removal.
Go to article

Authors and Affiliations

Marcin Zieliński
Mirosław Krzemieniewski
Download PDF Download RIS Download Bibtex

Abstract

This study looks at determining the main trends in the application of microwaves on plants in agricultural production in the processing of grain material, it provides examples of their effectiveness and an overview of the use of microwaves on plants available on the Russian market. Additionally, the research studied the experience and developments of leading scien-tists in the field of microwave radiation. Analysis of the available sources provided information on the positive effect of microwave radiation in the processing of crops. The use of microwaves on plants during drying destroys pathogens and bacteria, in particular, microwave processing of red lentils reduces grey mould damage by up to 30%. Positive results are also noted in the microwave processing of other crops, providing an increase in germination capacity of up to 7% and yield growth of up to 6%. The microwave plant market in Russia is represented mainly by dryers, and the use of microwaves on plants combining several functions of drying, disinfection, and pre-sowing stimulation.
Go to article

Authors and Affiliations

Fedor A. Kipriyanov
1
ORCID: ORCID
Petr A. Savinykh
2
ORCID: ORCID
Alexey Yu. Isupov
2
Yulia A. Plotnikova
1
Natalia A. Medvedeva
1
Svetlana V. Belozerova
1

  1. Federal State Budgetary Educational Institution of Higher Professional Education Vologda State Dairy Farming Academy, st. Schmidt, 2, 160555, Molochnoe, Vologda, Russia
  2. Federal Agricultural Research Center of the North-East, Kirov, Russian Federation
Download PDF Download RIS Download Bibtex

Abstract

Rape is an important oil crop with a wide range of uses. Harvested rapeseed must be cleaned and dried before processing. The process of drying rapeseed as a small-seeded crop has its own specifics. One of the new drying methods is the use of microwave radiation, the disadvantage of which is uneven heating of the product. The purpose of this work was to study the modes of drying rapeseed by electromagnetic radiation in the ultra-high frequency range in combination with filtration. The indicators of the intensity of oilseed drying by infrared irradiation on the experimental stand were determined. The analysis of the conducted studies showed that the temperature of seeds at the maximum microwave power rises in general 1.5 to 1.8 times faster than at half the power. The higher the seed moisture content is, the higher the rate of temperature increase. After each blowing cycle, which lasted for five seconds, the temperature of the rapeseeds was set higher than the previous temperature, and after increasing the blowing time up to fifteen seconds, the temperature decreased by 8–12°C and cyclically stabilized. The applications of microwave drying represented in the paper are environmentally friendly, since the seeds do not come into direct contact with the products of gas combustion, which deteriorate its quality due to the possible penetration of carcinogenic components into the products. Experimental data was taken into account when developing the design of a small-sized grain dryer for farms, in which the drying process takes place without heating the air as a heat carrier.
Go to article

Authors and Affiliations

Valentyna Bandura
1
ORCID: ORCID
Igor Bezbah
2
ORCID: ORCID
Ihor Kupchuk
3
ORCID: ORCID
Larisa Fialkovska
4
ORCID: ORCID

  1. Educational and Scientific Institute of Continuing Education and Tourism, National University of Life and Environmental Sciences of Ukraine, Ukraine
  2. Department of Processes, Equipment and Energy Management, Оdesa National University of Technology, Ukraine
  3. Engineering and Technology Faculty, Vinnytsia National Agrarian University, Ukraine
  4. Faculty of Trade, Marketing and Service, Vinnytsia Trade and Economics Institute of the State Trade and Economics University, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

In this study, laboratory-scale experiments were carried out to investigate the effects of microwave-assisted alkaline leaching on the treatment of electric arc furnace dusts to recover zinc and lead. Microwave treatment is a new innovative technology in waste treatment and now is an attractive advanced inter-disciplinary field and also environmental friendly. The highest zinc extraction, 50.3% in 60 minutes using 5 M NaOH at 750 W and L:S ratio 20, and lead extraction up to 92.84% was achieved in these same conditions but in 30 minutes. Compared with conventional leaching, the top extraction rate using MW-assisted leaching was higher by 16% (Zn) and 26% (Pb). Zinc presents in the flue dust in the form of franklinite (ZnFe2O4), its leaching in sodium hydroxide does not occur under the examined conditions, because it is enclosed in a matrix of iron.

Go to article

Authors and Affiliations

M. Laubertova
T. Havlik
L. Parilak
B. Derin
J. Trpcevska
Download PDF Download RIS Download Bibtex

Abstract

In this work, a real-time label-free microwave sensing mechanism for glucose concentration monitoring using a planar biosensor configured with an inset fed microstrip patch antenna has been demonstrated. A microstrip patch antenna with the resonating frequency of 1.45 GHz has been designed and is fabricated on the Flame Retardant (FR-4) substrate. Due to the intense electromagnetic field at the edges of the patch antenna, edge length has been used as the detecting area where the sample under test (SUT) interacts with the electromagnetic field. The Poly-Dimethyl-Siloxane (PDMS) with the trench in the centre has been employed as the sample holder. Here, the SUT is the glucose dissolved in DI (de-ionized) water with the concentration range of 0.2 to 0.6 g/mL. The dielectric constant dependency on the glucose concentration has been used as the distinguishing factor which results in a shift in the S-parameter. The experimentally measured RF parameters were observed closely which showed the shift in S11 magnitude from –40 to –15 dB and resonant frequency from 1.27 to 1.3 GHz w.r.t the SUT solution of 0.2 to 0.6 g/mL with linear regression coefficient of 0.881, and 0.983 respectively.
Go to article

Authors and Affiliations

Priya Rai
1
Poonam Agarwal
2

  1. Institute of Science and Technology, Chandrakona Town, Paschim Medinipur, West Bengal-721301, India
  2. Microsystems Lab, School of Computer and Systems Sciences, Jawaharlal Nehru University, New Delhi-110067, India
Download PDF Download RIS Download Bibtex

Abstract

Due to urbanization, the population in the major cities in Malaysia is approximately 72.8% of its total population. The increase of population density has directly increased the amount of sewerage sludge waste that poses threat to the environment. In line with the green initiatives, alternative method to develop good quality concrete material from sewerage sludge waste can be further explored. Traditionally, sewerage sludge waste is processed using incinerator that require high energy and it is time consuming. In this study, microwave heating which require less energy consumption and less time consuming is used for sewerage sludge preparation. Prior to heating process, sewerage sludge waste is over dried at 105°C for 24 hours. Three types of microwave heating namely medium heating, medium high heating and high heating has been used. The chemical and physical properties microwaved sewerage sludge ash (MSSA) was tested using X-Ray Fluorescence (XRF), X-Ray Diffraction (XRD) and Scanning Electron Microscopy (SEM). Based on the result, the recommended temperature for the MSSA production for the concrete is High Mode Temperature. This is due to the result of MSSA for X-Ray Fluorescent test as its shows the highest in the content for pozzolanic element which are SiO2 and Fe2O3 that produce after the microwave burning process. The mineralogical composition and the crystalline phase of the High temperature MSSA due to X-Ray Diffraction test also shows high content of SiO2 as the major component as it is good for pozzolanic reaction in concrete. From the Scanning Electron Microscope test, it is observed that particle of High heated MSSAare slightly smaller than other temperature. Also, the densification occurs at High temperature MSSA. Hence, the optimal burning temperature mode for MSSA is High Mode temperature.
Go to article

Authors and Affiliations

Doh Shu Ing
1
ORCID: ORCID
Ramadhansyah Putra Jaya
1
ORCID: ORCID
Chia Min Ho
1
ORCID: ORCID
Siew Choo Chin
1
ORCID: ORCID
Marcin Nabiałek
2
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
3
ORCID: ORCID
Sebastian Garus
4
ORCID: ORCID
Agata Śliwa
5
ORCID: ORCID

  1. College of Engineering, Universiti Malaysia Pahang, 26300 Gambang Kuantan Pahang, Malaysia
  2. Department of Physics, Czestochowa University of Technology, Poland
  3. Faculty of Chemical Engineering Technology, University Malaysia Perlis, Malaysia
  4. Faculty of Mechanical Engineering and Computer Science, Czestochowa University of Technology, Poland
  5. Division of Materials Processing Technology and Computer Techniques in Materials Science, Silesian 21 University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

Of late, the science of Remote Sensing has been gaining a lot of interest and attention due to its wide variety of applications. Remotely sensed data can be used in various fields such as medicine, agriculture, engineering, weather forecasting, military tactics, disaster management etc. only to name a few. This article presents a study of the two categories of sensors namely optical and microwave which are used for remotely sensing the occurrence of disasters such as earthquakes, floods, landslides, avalanches, tropical cyclones and suspicious movements. The remotely sensed data acquired either through satellites or through ground based- synthetic aperture radar systems could be used to avert or mitigate a disaster or to perform a post-disaster analysis.

Go to article

Authors and Affiliations

Shweta Vincent
Sharmila Anand John Francis
Kumudha Raimond
Om Prakash Kumar
Download PDF Download RIS Download Bibtex

Abstract

The organo-inorganic commercial binder Albertine F/1 (Hüttenes-Albertus) constituting the starch-aluminosilicate mixture was directed to structural studies. The paper presents a detailed structural analysis of the binder before and after exposure to physical curing agents (microwaves, high temperature) based on the results of infrared spectroscopy studies (FTIR). An analysis of structural changes taking place in the binder system with the quartz matrix was also carried out. Based on the course of the obtained IR spectra, it was found that during the exposure on physical agents there are structural changes within the hydroxyl groups in the polymeric starch chains and silanol groups derived from aluminosilicate as well as in the quartz matrix (SiO2). The curing of the molding sand takes place due to the evaporation of the solvent water and the formation of intramolecular and intermolecular cross-linking hydrogen bonds. Type and amount of hydrogen bonds presence in cured molding sand have an impact on selected properties of molding sand. Results indicates that for molding sand with Albertine F/1 during conventional heating a more extensive network of hydrogen bonds is created.
Go to article

Authors and Affiliations

S. Żymankowska-Kumon
B. Grabowska
A. Bobrowski
K. Kaczmarska
S. Cukrowicz
Download PDF Download RIS Download Bibtex

Abstract

This publication describes research on the course of the process of cross-linking new BioCo polymer binders - in the form of water-based polymer compositions of poly(acrylic acid) or poly(sodium acrylate)/modified polysaccharide - using selected physical and chemical factors. It has been shown that the type of cross-linking factor used influences the strength parameters of the moulding sand. The crosslinking factors selected during basic research make it possible to obtain sand strengths similar to those of samples of sands bonded with commercial binders. Microwave radiation turned out to be the most effective cross-linking factor in a binder-matrix system. It was proven that adsorption in the microwave radiation field leads to the formation of polymer lattices with hydrogen bonds which play a major role in maintaining the formed cross-linked structures in the binder-matrix system. As a result, the process improves the strength parameters of the sand, whereas the hardening process in a microwave field significantly shortens the setting time.
Go to article

Authors and Affiliations

B. Grabowska
A. Bobrowski
K. Kaczmarska
E. Olejnik
Download PDF Download RIS Download Bibtex

Abstract

The effects of silica additive (Poraver) on selected properties of BioCo3 binder in form of an aqueous poly(sodium acrylate) and dextrin (PAANa/D) binder were determined. Based on the results of the thermoanalytical studies (TG-DTG, FTIR, Py-GC/MS), it was found that the silica additive results in the increase of the thermostability of the BioCo3 binder and its contribution does not affect the increase in the level of emissions of organic destruction products. Compounds from group of aromatic hydrocarbons are only generated in the third set temperature range (420-838°C). The addition of silicate into the moulding sand with BioCo3 causes also the formation of a hydrogen bonds network with its share in the microwave radiation field and they are mainly responsible for maintaining the cross-linked structures in the mineral matrix system. As a consequence, the microwave curing process in the presence of Poraver leads to improved strength properties of the moulding sand (���� �� ). The addition of Poraver's silica to moulding sand did not alter the permeability of the moulding sand samples, and consequently reduced their friability. Microstructure investigations (SEM) of microwave-cured samples have confirmed that heterogeneous sand grains are bonded to one another through a binder film (bridges).

Go to article

Authors and Affiliations

S. Cukrowicz
S. Żymankowska-Kumon
B. Grabowska
A. Bobrowski
D. Drożyński
K. Kaczmarska
Download PDF Download RIS Download Bibtex

Abstract

The article takes into consideration the researches concerning inserting the Glassex additive to the microwaved-hardened and selfhardened moulding sands with water glass. In the research different types of ester hardeners to self-hardened moulding sands with water glass were used. The influence of Glassex additive on retained strength of moulding sands with different hardeners and prepared by different technologies of hardening were tested. The influence of different hardeners and the technology of hardening on retained strength of moulding sand with water glass and the Glassex additive were also estimated.

Go to article

Authors and Affiliations

J. Jakubski
K. Major-Gabryś
M. Stachowicz
St.M. Dobosz
D. Nowak
Download PDF Download RIS Download Bibtex

Abstract

A method for manufacturing of Al-Si alloy (EN AC-44200) matrix composite materials reinforced with MAX type phases in Ti-Al-C systems was developed. The MAX phases were synthesized using the Self-propagating High-Temperature Synthesis (SHS) method in its microwave assisted mode to allow Ti2AlC and Ti3AlC2 to be created in the form of spatial structures with open porosity. Obtained structures were subjected to the squeeze casting infiltration in order to create a composite material. Microstructures of the produced materials were observed by the means of optical and SEM microscopies. The applied infiltration process allows forming of homogeneous materials with a negligible residual porosity. The obtained composite materials possess no visible defects or discontinuities in the structure, which could fundamentally deteriorate their performance and mechanical properties. The produced composites, together with the reference sample of a sole matrix material, were subjected to mechanical properties tests: nanohardness or hardness (HV) and instrumental modulus of longitudinal elasticity (EIT).
Go to article

Authors and Affiliations

A. Dmitruk
K. Naplocha
Download PDF Download RIS Download Bibtex

Abstract

Microwave sintering process was employed to agglomerate ferromanganese alloy powders. The effects of sintering temperature, holding time and particle size composition on the properties and microstructure of sintering products were investigated. The results was shown that increasing sintering temperature or holding time appropriately is beneficial to increase the compressive strength and volume density. SEM and EDAX analysis shows that the liquid phase formed below the melting point in the sintering process, which leads to densification. XRD patterns indicate that the main reaction during microwave sintering is the decarbonization and carburization of iron carbide phase. The experiment demonstrate that the optimum microwave sintering process condition is 1150°C, 10 min and 50% content of the powders with the size of –75 μm
Go to article

Authors and Affiliations

Lei Li
Libo Zhang
Linqing Dai
Hongbo Zhu
Guo Chen
Jinhui Peng
Qin Guo
Download PDF Download RIS Download Bibtex

Abstract

The analysis of the autocorrelation function of a noise signal in a limited band of a microwave frequency range is described in the paper. On the basis of this analysis the static characteristic of the detector for object movement was found. The measurement results for the correlation function of noise signals are shown and the application of such solution in a noise radar for the precise determination of distance variations and the velocity of these changes is presented in the paper. The construction, working principle and measurement results for through-thewall noise radar demonstrator have been presented in the paper. A broadband noise signal in microwave S frequency band has been chosen, for high sensitivity getting. The broadband noise signal together with correlation receiver provides high sensitivity and moderate range for low transmitted power level. The experimental results obtained from 2.6-3.6 GHz noise-like waveform for the signal of a breathing human are presented. Conclusions and future plans for application of the presented detection technique in broadband noise radars conclude the paper

Go to article

Authors and Affiliations

Waldemar Susek
Bronisław Stec
Download PDF Download RIS Download Bibtex

Abstract

We fabricated two different kinds of composite materials for absorbing microwave in a frequency range of 2 to 18 GHz using coaxial airline and thru-reflect-line (TRL) method. The composite materials having carbon nanotube (CNT) with carbonyl iron (CI) or iron oxide (Fe3O4) were fabricated by mixing each components. Magnetic properties were measured by SQUID equipment. Complex permittivity and complex permeability were also obtained by measuring S-parameters of the toroidal specimen dispersing CI/CNT and Fe3O4/CNT into the 50 weight percent (wt%) epoxy resin. The real permittivity was improved by mixing the CNT however, the real permeability was same as pure magnetic powders. The CI/CNT had a maximum value of real permittivity and real permeability, 11 and 1.4 at 10 GHz, respectively. The CNT composites can be adapted to the radar absorbing materials, band width 8-12 GHz.

Go to article

Authors and Affiliations

Jung Hyo Park
Jaeho Choi
Kisu Lee
Jinwoo Park
Jung Kun Song
Eunkyung Jeon
Download PDF Download RIS Download Bibtex

Abstract

Presently, finding effective, simple, inexpensive, hygienic and safe pest control agents are the biggest challenges in management of stored product insects, where those features are available in most physical factors. The insecticidal efficiency of four diversified physical control agents (ultraviolet and microwave irradiations, thermal remediation and silica nanoparticles) were assayed against the most common coleopteran insect species ( Sitophilus oryzae L. and Tribolium castaneum Herbst) on stored wheat. Exposing tested insects to microwave irradiations (2450 MHz) for 25 sec gave preventive efficiency for stored material, which reached 97.68 and 99.02%, respectively. Sufficient exposure periods to kill 50% of the coleopteran adults (LT50%) were 13 and 14 sec, respectively. For effective control with UV radiations, S. oryzae should be exposed for 12 h and T. castaneum for 24 h. An exposure period of 24 h caused progeny reduction 95.24 and 89.72% and gave preventive efficiency of 94.25 and 93.37%, respectively. Values of LT50% were 56.76 and 74.04 h, respectively. Exposing infested samples of the tested species to 70oC for 10 min killed 100% of adults and caused complete cessation of egg laying. Furthermore, 65°C or 70°C caused full progeny reduction. The lowest level of stored product weight loss (1.15 and 1.35%, respectively) occurred at 70°C, where sufficient exposure temperatures to kill 50% of the coleopteran adults (LTD50%) were 60.95°C and 61.63°C, respectively. Synthetic silica nanoparticles (SSiNPs) were more toxic against the tested populations than bio-silica nanoparticles (BSiNPs) after 48–72 h. A concentration of 1.00 g kg–1 of tested silica nanoparticles caused significant reduction in adult populations, saved wheat grain vitality and gave least lost weights of flour (3.35–6.85%).
Go to article

Authors and Affiliations

Khalil A. Draz
1
Magdy I. Mohamed
2
Reda M. Tabikha
1
Adnan A. Darwish
1
Mohamed A. Abo-Bakr
1

  1. Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
  2. Stored Product Pests Department, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
Download PDF Download RIS Download Bibtex

Abstract

This paper analyses the influence of the applied microwave power output on the intensification of drying in the context of process kinetics and product quality. The study involved testing samples of beech wood (Fagus sylvatica L.). Wood samples were dried in the microwave chamber at: 168 W, 210 W, 273 W, 336 W and 378 W power output level. For comparison, wood was dried convectively at 40 ◦C and 87% air relative humidity. The analysis of drying process kinetics involved nonlinear regression employing the Gompertz model. Dried samples were subjected to static bending tests in order to specify the influence of the applied microwave power on modulus of elasticity (MOE) and modulus of rapture (MOR). The obtained correlations of results were verified statistically. Analysis of drying kinetics, strength test results and Tukey’s test showed that the applied microwaves of a relatively low level significantly shortened the drying time, but did not cause a reduction in the final quality of dried wood, compared with conventional drying.

Go to article

Authors and Affiliations

Kinga Rajewska
Anna Smoczkiewicz-Wojciechowska
Jerzy Majka
Download PDF Download RIS Download Bibtex

Abstract

The sodium silicate sands hardened by microwave have the advantages of high strength, fast hardening speed and low residual strength with the lower addition of sodium silicate. However, the sodium ion in the sands will absorb moisture from the atmosphere, which would lead to lower storing strength, so the protection of a bonding bridge of sodium silicate between the sands is crucial. Methyl silicone oil is a cheap hydrophobic industrial raw material. The influence of the addition amount of methyl silicone oil modifier on compressive strength and moisture absorption of sodium silicate sands was studied in this work. The microscopic analysis of modified before and after sodium silicate sands has been carried on employing scanning electron microscopy(SEM) and energy spectrum analysis(EDS). The results showed that the strength of modified sodium silicate sands was significantly higher than that of unmodified sodium silicate sands, and the best addition of methyl silicone oil in the quantity of sodium silicate was 15%. It was also found that the bonding bridge of modified sodium silicate sands was the density and the adhesive film was smooth, and the methyl silicone oil was completely covered on the surface of the sodium silicate bonding bridge to protect it.
Go to article

Bibliography

[1] Stachowicz, M., Pałyga, Ł. & Kȩpowicz, D. (2020). Influence of automatic core shooting parameters in hot-box technology on the strength of sodium silicate olivine moulding sands. Archives of Foundry Engineering. 20(1), 67-72.
[2] Nowak, D.(2017).The impact of microwave penetration depth on the process of hardening the moulding sand with sodium silicate. Archives of Foundry Engineering. 17(4), 115-118.
[3] Gal, B., Granat, K. & Nowak, D. (2017). Effect of compaction degree on permittivity of water-glass containing moulding sand. Metalurgija. 56(1), 17-20.
[4] Kaźnica, N. & Zych, J. (2019). Indicator wso: a new parameter for characterization of protective coating efficiency against humidity. Journal of Materials Engineering and Performance. 28(7), 3960-3965.
[5] Bae, M.A., Lee, M.S. & Baek, J.H. (2020). The effect of the surface energy of water glass on the fluidity of sand. Journal of Korean Institute of Metals and Materials. 58(5), 319-325.
[6] Peng, Q.S., Wang, P.C., Huang, W., & Chen, H.B. (2020). The irradiation-induced grafting of nano-silica with methyl silicone oil. Polymer. 192(4), 122315.
[7] Stachowicz, M., Granat, K., & Payga. (2017). Influence of sand base preparation on properties of chromite moulding sands with sodium silicate hardened with selected methods. Archives of Metallurgy and Materials. 62(1), 379-383.
[8] Zhu, C. (2007). Recent advances in waterglass sand technologies. China Foundry. 4(1), 13-17.
[9] Huafang, W., Wenbang, G. & Jijun, L. (2014). Improve the humidity resistance of sodium silicate sands by ester-microwave composite hardening. Metalurgija. 53(4), 455-458.
[10] Masuda, Y., Tsubota, K., Ishii, K., Imakoma, H. & Ohmura, N. (2009). Drying rate and surface temperature in solidification of glass particle layer with inorganic binder by microwave drying. KAGAKU KOGAKU RONBUNSHU. 35(2), 229-231.
[11] Kosuge, K., Sunaga, M., Goda, R., Onodera, H. & Okane, T. (2018). Cure and collapse mechanism of inorganic mold using spherical artificial sand and water glass binder. Materials transactions. 59(11), 1784-1790.
[12] Zhang, Y.H., Liu, Z.Y., Liu, Z.C. & Yao, L.P. (2020). Mechanical properties of high-ductility cementitious composites with methyl silicone oil. Magazine of Concrete Research. 72(14), 747-756.
Go to article

Authors and Affiliations

Huafang Wang
1
ORCID: ORCID
Xiang Gao
1
Lei Yang
1
ORCID: ORCID
Wei He
1
Jijun Lu
1
ORCID: ORCID

  1. School of Mechanical Engineering and Automation, Wuhan Textile University, China
Download PDF Download RIS Download Bibtex

Abstract

In the paper presented are results of a research on effectiveness of absorbing electromagnetic waves at frequency 2.45 GHz by unhardened sodium silicate base sands (SSBS) prepared of high-silica base sand and a PLA (Polylactide) 3D-prited (3DP) mould walls. Measurements of power loss of microwave radiation (P in) expressed by a total of absorbed power (P abs), output power (P out) and reflected power (P ref) were carried-out on a stand of semiautomatic microwave slot line for determining balance of microwave power emitted into selected multimaterial systems. Values of microwave power loss in the rectangular waveguide filled with unhardened moulding sands and prepared by fused deposition modelling (FDM) 5 mm polylactide (PLA) walls with grid infill density from 25% to c.a. 100% served for determining effectiveness of microwave heating. Balance of microwave power loss is of technological importance for microwave manufacture of high-quality casting sand moulds and cores in possibility of use 3D-printed mould tools and core boxes. It was found that apparent density of SSBS placed in a waveguide with PLA walls influences parameters of power output (P out) and power reflected (P ref). The PLA wall position and grid infill density were identified to have a limited effect on effectiveness of absorbing microwaves (P abs).
Go to article

Authors and Affiliations

M. Stachowicz
1
ORCID: ORCID

  1. Wroclaw University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this study, Hydroxyapatite (HAp) is extracted from the Rihu fish scales which are generally dumped as garbage. The aluminium composite was fabricated through the powder metallurgy technique by reinforcing HAp (0, 5, 10 and 15 wt%) as a reinforcement. The fabricated samples were sintered through microwave sintering at 530℃ for 15 min under an argon gas environment. The fabricated composites were subjected to X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM) and Energy Dispersive Spectroscopy (EDS) analysis to confirm the constituting elements and to describe the reinforcement dispersion in the matrix. Uniform reinforcement dispersion was observed for the composite reinforces with 5%HAp, 10%HAp particles. The mechanical characterization results reveal that the Al-10% HAp composite exhibits a microhardness value of 123 ± 3 Hv and maximum ultimate tensile strength of 263 ± 10 MPa and 299 ± 9 MPa compression strength was obtained due to the presence of a strong bond among the aluminium and HAp particles.
Go to article

Authors and Affiliations

V.S.S. Venkatesh
1
ORCID: ORCID
Kalapala Prasad
2
ORCID: ORCID
Ashish B. Deoghare
3
ORCID: ORCID

  1. GMR Institute of Technology, Rajam, India
  2. University College of Engineering, JNTU Kakinada, India
  3. National Institute of Technology Silchar, Assam, India

This page uses 'cookies'. Learn more