Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study focuses on the effect of rare earth elements (REM) in mischmetal on the morphology and chemical composition of non-metallic inclusions in pre-oxidised steel. Calculations were carried out using the WYK_STAL computer program according to two calculation models, considering/ignoring the sulphur partition coefficient at the liquid steel-liquid slag interfacial boundary. It was found that the chemical composition of the resulting precipitates is a consequence of the order in which deoxidising additives were admixed. Simulations confirmed the presence of Ce oxides and sulphides. This was also confirmed by the analysis of samples taken from the steel ingot after laboratory melting. Non-metallic inclusions Ce2O3 and CeS, and the complex of precipitates: La2O3-Ce2O3 was also identified in the steel. Introduction of mischmetal in the final stage refining is the most effective method. Therefore, the oxygen content is reduced below 0.001%, and the sulphfur content can be reduced to 0.004%.
Go to article

Bibliography


[1] Smirnov, L.A., Rovnushkin, V.A., Oryshchenko, A.S., Kalinin, G. Yu. & Milyuts, V.G. (2016). Modification of steel and alloys with rare-earth elements. Part 1. Metallurgist. 59(11), 1053-1061. DOI:10.1007/s11015-016-0214-x.

[2] Wang, L.M., Lin, Q., Yue, L.J., Liu, L., Guo, F. & Wang, F.M. (2008). Study of application of rare earth elements in advanced low alloy steels. Journal of Alloys and Compounds. 451(1-2), 534-537. DOI:10.1016/j.jallcom.2007.04.234.

[3] Wang, L., Lin, Q., Ji, J. & Lan, D. (2006). New study concerning development of application of rare earth metals in steels. Journal of Alloys and Compounds. 408-412, 384-386. DOI:10.1016/j.jallcom.2005.04.090.

[4] Wang, M., Mu, S., Sun, F. & Wang, Y. (2007). Influence of rare earth elements on microstructure and mechanical properties of cast high-speed steel rolls. Journal of Rare Earths. 25(4), 490-494. DOI:10.1016/S1002-0721(07)60462-1.

[5] Smirnov, L.A., Rovnushkin, V.A., Oryshchenko, A.S., Kalinin, G., Yu. & Milyuts, V.G. (2016). Modification of steel and alloys with rare-earth elements. Part 2. Metallurgist. 60(1), 38-46. DOI:10.1007/s11015-016-0249-z.

[6] Jiang, X., Li, G., Tang, H., Liu, J., Cai, S. & Zhang, J. (2023). Modification of Inclusions by Rare earth elements in a high-strength oil casing steel for improved sulphur resistance. Materials. 16(2), 675, 1-18. DOI:10.3390/ma16020675.

[7] Ning, Z., Li, C., Wang, J., Zhai, Y., Xiong, X. & Chen, L. (2023). Refinement and modification of Al2O3 inclusions in high-carbon hard wire steel via rare earth lanthanum. Materials. 16(14), 5070, 1-12. DOI:10.3390/ma16145070.

[8] Program instructions Wyk_Stal.

[9] Gerasin, S., Kalisz, D., Iwanciew, J. (2020). Thermodynamic and kinetic of simulation of Y2O3 and Y2S3 nonmetallic phase formation in liquid steel. Journal of Mining and Metallurgy Section B: Metallurgy. 56(1) 11-25. DOI:10.2298/JMMB190326050G.

[10] Iwanciw, J. (2002). Simulator of steelmaking processes for work in real time. Kraków: Komitet Metalurgii PAN, Wyd. Nauk. Akapit.

[11] Iwanciw, J., Podorska, D. & Wypartowicz, J. (2011). Modeling of oxide precipitates chemical composition during steel deoxidation. Archives of Metallurgy and Materials. 56(4), 999-1005. DOI: 10.2478/v10172-011-0110-0.

[12] Iwanciw, J., Podorska, D. & Wypartowicz, J. (2011). Simulation of oxygen and nitrogen removal from steel by means of titanium and aluminum. Archives of Metallurgy and Materials. 56(3), 635-644. DOI: 10.248/v10172-011-0069-x.

[13] Szucki, M., Kalisz, D., Gerasin, S., Mrówka, N.M., Iwanciw, J. & Semiryagin, S. (2023). Analysis of the effect of cerium on the formation of non-metallic inclusions in low carbon steel. Scientific Reports. 13, 8294, 1-9. DOI: 10.1038/s41598-023-34761-0.

[14] Adabavazeh, Z., Hwang, W. & Su, Y. (2017). Effect of adding cerium on microstructure and morphology of Ce-based inclusions formed in low-carbon steel. Scientific Reports. 70 DOI: 10.1038/srep46503 (2017).

[15] Han, Q.Y. (1998). Rare Earth, Alkaline Earth and Other Elements in Metallurgy. IOS Press.

[16] Han, Y., Liu, Z.H., Wu, C.B., Zhao, Y., Zu, G.Q., Zhu, W.W. & Ran, X. (2023). A short review on the role of alloying elements in duplex stainless steels. Tungsten. 5(4), 419-439. DOI:10.1007/s42864-022-00168-z.

[17] Hino, M., Ito, K. (2010). Thermodynamic Data for Steelmaking. Tohoku University Press.

[18] Mao, N., Yang, W., Chen, D., Lu, W., Zhang, X., Chen, S., Xu, M., Pan, B., Han, L., Zhang, X. & Wang, Z. (2022). Effect of lanthanum addition on formation behaviors of inclusions in Q355B. Materials. 15(22), 7952, 1-14. DOI: 10.3390/ma15227952.

Go to article

Authors and Affiliations

D. Kalisz
1
ORCID: ORCID
S. Sobula
1
ORCID: ORCID
A. Hutny
1 2
S. Gerasin

  1. AGH University of Krakow, Faculty of Foundry Engineering, Krakow, Polandul. Reymonta 23, 30-059 Kraków, Poland
  2. Częstochowa University of Technology, Faculty of Production Engineering and Materials TechnologyAl. Armii Krajowej 19, 42-200 Częstochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the results of Cr - Ni 18/9 austenitic cast steel modifications by mischmetal. The study was conducted on industrial melts. Cast steel was melted in an electric induction furnace with a capacity of 2000 kg and a basic lining crucible. .The mischmetal was introduced into the ladle during tapping of the cast steel from the furnace. The effectiveness of modification was examined with the carbon content of 0.1% and the presence of δ ferrite in the structure of cast steel stabilized with titanium. The changes in the structure of cast steel and their effect on mechanical properties and intergranular corrosion were studied. It was found that rare earth metals decrease the sulfur content in cast steel and above all, they cause a distinct change in morphology of the δ ferrite and non-metallic inclusions. These changes have improved mechanical properties. R02, Rm, and A5 and toughness increased significantly. There was a great increase of the resistance to intergranular corrosion in the Huey test. The study confirmed the high efficiency of cast steel modification by mischmetal in industrial environments. The final effect of modification depends on the form and manner of placing mischmetal into the liquid metal and the melting technology, ie the degree of deoxidation and desulfurization of the metal in the furnace.
Go to article

Authors and Affiliations

J. Kasińska
M. Gajewski
Download PDF Download RIS Download Bibtex

Abstract

In this paper is discussed the effect of the inoculant mischmetal addition on the microstructure of the magnesium alloy AZ91. The concentration of the inoculant was increased in the samples within the range from 0.1% up to 0.6%. The thermal process was performed with the use of Derivative and Thermal Analysis (DTA). A particular attention was paid to finding the optimal amount of the inoculant, which causes fragmentation of the microstructure. The concentration of each element was verified with use of a spark spectrometer. In addition, the microstructures of every samples were examined with the use of an optical microscope and also was performed an image analysis with a statistical analysis using the NIS–Elements program. The point of those analyses was to examine the differences in the grain diameters of phase αMg and eutectic αMg+γ(Mg17Al12) in the prepared samples as well as the average size of each type of grain by way of measuring their perimeters. This paper is the second part of the introduction into a bigger research on grain refinement of magnesium alloys, especially AZ91. Another purpose of this research is to achieve better microstructure fragmentation of magnesium alloys without the relevant changes of the chemical composition, which should improve the mechanical properties.

Go to article

Authors and Affiliations

D. Mikusek
C. Rapiejko
ORCID: ORCID
D. Walisiak
T. Pacyniak
ORCID: ORCID

This page uses 'cookies'. Learn more