Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Keywords Mo2C MoO3 CO NaCl
Download PDF Download RIS Download Bibtex

Abstract

In this work, influence of NaCl additive on the transformation process of MoO3 to Mo2C under pure CO atmosphere in the range of room temperature to 1170 K was investigated. The results showed that transformation of MoO3 to Mo2C can be roughly divided into two stages: the reduction of MoO3 to MoO2 (the first stage) and the carburization of MoO2 to Mo2C (the second stage). As to the first stage, it was found that increasing the content of NaCl (from 0 to 0.5 wt.%) was beneficial for the increase of reaction rate due to the nucleation effect; while when the content of NaCl increased to 2 wt.%, the reaction rate will be decreased in turn. As to the second stage, the results showed that reaction rate was decreased with the increase of NaCl, which may be due to the formation of low-melting point eutectic. The work also found that morphology of as-prepared Mo2C was irregular and particle size of it was gradually increased with increasing the NaCl content. According to the results, the possible reaction mechanism was proposed.
Go to article

Authors and Affiliations

Biao-Hua Que
1
ORCID: ORCID
Lu Wang
1 2
ORCID: ORCID
Bao Wang
3
ORCID: ORCID
Yi Chen
3
ORCID: ORCID
Zheng-Liang Xue
3
ORCID: ORCID

  1. Wuhan University of Science And Technology, Hubei Provincial Key Laboratory For New Processes of Ironmaking and Steelmaking, Wuhan 430081, China
  2. Foshan (Southern China) Institute For New Materials, Foshan 528200, Guangdong, China
  3. Wuhan University of Science and Technology, The State Key Laboratory of Refractories and Metallurgy, Wuhan 430081, China
Download PDF Download RIS Download Bibtex

Abstract

This study utilizes Ti-8Nb-4Co alloys added to different proportions of Mo2C powders (1, 3, and 5 mass%) by the vacuum sintering process of powder metallurgy and simultaneously vacuum sinters the alloys at 1240, 1270, 1300, and 1330°C for 1 h, respectively. The experimental results indicate that when 3 mass% Mo2C powders were added to the Ti-8Nb-4Co alloys, the specimens possessed the optimal mechanical properties after sintering at 1300°C for 1 h. The relative density was 98.02%, and the hardness and TRS were enhanced to 69.6 HRA and 1816.7 MPa, respectively. In addition, the microstructure of vacuum sintered Ti-8Nb-4Co-3Mo2C alloys has both α and β-phase structures, as well as TiC precipitates. EBSD results confirm that the Mo 2C in situ produced TiC during the sintering process and was uniformly dispersed in the grain boundary. Moreover, the reduced molybdenum atom acted as a β-phase stabilizing element and solid-solution in the titanium matrix.
Go to article

Authors and Affiliations

Shih-Hsien Chang
1
ORCID: ORCID
Kun Jie Liao
1
ORCID: ORCID
Kuo-Tsung Huang
2
ORCID: ORCID
Cheng Liang
1
ORCID: ORCID

  1. National Taipei University of Technology, Department of Materials and Miner al Resources Engineering, Taipei 10608, Taiwan, ROC
  2. National Kangshan Agricultural Industrial Senior High School, Department of Auto-Mechanics, Kaohsiung 82049, Taiwan, ROC

This page uses 'cookies'. Learn more