Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

According to the European Environment Agency (EEA 2018), air quality in Poland is one of the worst in Europe. There are several sources of air pollution, but the condition of the air in Poland is primarily the result of the so-called low-stack emissions from the household sector. The main reason for the emission of pollutants is the combustion of low-quality fuels (mainly low-quality coal) and waste, and the use of obsolete heating boilers with low efficiency and without appropriate filters. The aim of the study was to evaluate the impact of measures aimed at reducing low-stack emissions from the household sector (boiler replacement, change of fuel type, and thermal insulation of buildings), resulting from environmental regulations, on the improvement of energy efficiency and the emission of pollutants from the household sector in Poland. Stochastic energy and mass balance models for a hypothetical household, which were used to assess the impact of remedial actions on the energy efficiency and emission of pollutants, have been developed. The annual energy consumption and emissions of pollutants were estimated for hypothetical households before and after the implementation of a given remedial action. The calculations, using the Monte Carlo simulation, were carried out for several thousand hypothetical households, for which the values of the technical parameters (type of residential building, residential building area, unitary energy demand for heating, type of heat source) were randomly drawn from probability distributions developed on the basis of the analysis of the domestic structure of households. The model takes the coefficients of correlation between the explanatory variables in the model into account. The obtained results were multiplied so that the number of hypothetical households was equal to 14.1 million, i.e. the real number of households in Poland. The obtained results allowed for identifying the potential for reducing the emission of pollutants such as carbon dioxide, carbon monoxide, dust, and nitrogen oxides, and improving the energy efficiency as a result of the proposed and implemented measures, aimed at reducing low-stack emission, resulting from the policy.

The potential for emissions of gaseous pollutants is 94% for CO, 49% for NOx, 90% for dust, and 87% for SO2. The potential for improving the energy efficiency in households is around 42%.

Go to article

Authors and Affiliations

Dominik Kryzia
ORCID: ORCID
Monika Pepłowska
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The purposes of this study were to investigate the impact of proportions of cast iron scrap, steel scrap, carbon and ferro silicon on hardness and the quality of cast iron and to obtain an appropriate proportion of the four components in iron casting process using a mixture experimental design, analysis of variance and response surface methodology coupled with desirability function. Monte Carlo simulation was used to demonstrate the impacts of different proportions of the four components by varying the proportions of components within ±5% of the four components. Microstructures of the cast iron sample obtained from a company and the cast iron samples casted with the appropriate proportions of the four components were examined to see the differences of size and spacing of pearlite particle. The results showed that linear mixture components were statistically significant implying a high proportion of total variability for hardness of the cast iron samples explained by the casting mixtures of raw materials. The graphite of the sample casted from the appropriate proportion has shorter length and more uniform distribution than that from the company. When varying percentages of the four components within ±5% of the appropriate proportion, simulated hardness values were in the range of 237 to 256 HB.
Go to article

Authors and Affiliations

C. Saikaew
1
ORCID: ORCID
S. Harnsopa
1

  1. Department of Industrial Engineering, Khon Kaen University, Khon Kaen 40002 Thailand
Download PDF Download RIS Download Bibtex

Abstract

This paper aims to enhance the productivity of a chilled beef production line by comparing two techniques; standard time calculation and simulation. The best improvement method was obtained using the work-study principle, a network diagram, and bottleneck identification. Two methods for improvement are proposed based on the ECRS, the Theory of Constraint (TOC), and line balancing concepts. A simulation model is developed to mimic the actual production line. The simulation results are verified, validated, and compared. Some workstations were combined, and the allocation of the workers was arranged. The present production line efficiency was 46.21%, which increased to 67.09% and 79.71% from the suggested methods. It showed that using the standard time calculation gives a different result from the simulation. In summary, the simulation model along with the application of TOC and ECRS, provides accurate information and improves overall productivity.
Go to article

Authors and Affiliations

Rendayu Jonda Neisyafitri
1
Pornthipa Ongkunaruk
2
Wisute Ongcunaruk
3

  1. Department of Agroindustrial Technology, Faculty of Agricultural Technology, Universitas Gadjah Mada, Yogyakarta, Indonesia
  2. Department of Industrial Engineering, Faculty of Engineering, Kasetsart University, Thailand
  3. Department of Electrical and Computer Engineering, Faculty of Engineering, King Mongkut’s University of Technology North Bangkok, Thailand
Download PDF Download RIS Download Bibtex

Abstract

The safety of the masonry structure is determined by the value of the partial factor used, which is influenced by many factors. The variability of these factors determines obtaining significant differences in the load levels of various masonry structures. Hence, the analysis of masonry structures should be carried out taking into account a sufficient range of variability of factors affecting its safety. The article presents a multi-stage safety analysis of an exemplary brick masonry column. For the construction, the relationship between partial factors used for interactions in different configurations and factors for the masonry compressive strength was examined. The analyses consisted in determining the reliability index beta with the Monte Carlo method. The article presents the results of experimental tests carried out on a real construction, as well as the results of FEM numerical simulations.
Go to article

Authors and Affiliations

Joanna Zięba
1
ORCID: ORCID
Lidia Buda-Ożóg
2
ORCID: ORCID
Izabela Skrzypczak
3
ORCID: ORCID

  1. MSc., Eng., Rzeszow University of Technology, Faculty of Civil Engineering, Department of Building Structures, Poznańska 2, Rzeszów 35-084, Poland
  2. DSc., PhD., Eng., Rzeszow University of Technology, Faculty of Civil Engineering, Department of Building Structures, Poznańska 2, Rzeszów 35-084, Poland
  3. DSc., PhD., Eng., Rzeszow University of Technology, Faculty of Civil Engineering, Department of Geodesy and Geotechnics, Poznańska 2, Rzeszów, 35-084, Poland
Download PDF Download RIS Download Bibtex

Abstract

The mean-reversion model is introduced into the study of mineral product price prediction. The gold price data from January 2018 to December 2021 are selected, and a mean-reverting stochastic process simulation of the gold price was carried out using Monte Carlo simulation (MCS) method. By comparing the statistical results and trend curves of the mean-reversion (MR) model, geometric Brownian motion (GBM) model, time series model and actual price, it is proved that the mean-reversion process is valid in describing the price fluctuation of mineral product. At the same time, by comparing with the traditional prediction methods, the mean-reversion model can quantitatively assess the uncertainty of the predicted price through a set of equal probability stochastic simulation results, so as to provide data support and decision-making basis for the risk analysis of future economy.
Go to article

Authors and Affiliations

Shuwei Huang
1 2 3
ORCID: ORCID
Zhaoyang Ma
1
Feng Jin
1
ORCID: ORCID
Yuansheng Zhang
1

  1. BGRIMM Technology Group, China
  2. Beijing Key Laboratory of Nonferrous Intelligent Mining Technology, China
  3. BGRIMM Intelligent Technology Co. Ltd, China
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to model the operation of a wastewater treatment plant using the Monte Carlo method and selected probability distributions of random variables. Pollutant indices in treated wastewater were analysed, such as: biological oxygen demand ( BOD 5), chemical oxygen demand ( COD Cr), total suspended solids ( TSS), total nitrogen (N tot), total phosphorus (P tot). The preliminary analysis of pollution indicators series included the: calculation of descriptive statistics and assessment of biological degradability of wastewater. The consistency of the theoretical distributions with the empirical ones was assessed using Anderson–Darling statistics. The best-fitting statistical distributions were selected using the percent bias criterion. Based on the calculations performed, it was found that the analysed indicators of pollution in treated wastewater were characterised by an average variability of composition for BOD 5, COD Cr and TSS, and a high variability of composition for N tot and P tot. The best fitted distribution was log-normal for BOD 5, TSS, N tot and P tot and general extreme values for COD Cr. The simulation carried out using the Monte-Carlo method confirmed that there may be problems associated with the reduction of nutrients (N tot and P tot) the analysed wastewater treatment plant. Results of values obtained of the risk values of negative control of wastewater treatment plant operation for biogenic compounds, different from 1, indicate that the number of exceedances at the outflow may be higher than the acceptable one.
Go to article

Authors and Affiliations

Karolina Migdał
1
ORCID: ORCID
Agnieszka Operacz
1
ORCID: ORCID
Iryna Vaskina
2
ORCID: ORCID
Paulina Śliz
3
ORCID: ORCID
Jorge Tavares
4 5
ORCID: ORCID
Adelaide Almeida
4 5 6
ORCID: ORCID
Michał Migdał
7

  1. University of Agriculture in Krakow, Faculty of Environmental Engineering and Land Surveying, Department of Sanitary Engineering and Water Management, al. Mickiewicza 24/28, 30-059 Kraków, Poland
  2. Sumy State University, Faculty of Technical System and Energy Efficient Technologies, Department of Applied Ecology, Sumy, Ukraine
  3. Cracow University of Economics, Institute of Spatial Management and Urban Studies, Department of Spatial Management, Kraków, Poland
  4. Polytechnic Institute of Beja, Department of Technology and Applied Sciences, Beja, Portugal
  5. University of Beira Interior, Faculty of Engineering, Research Unit Fiber Materials and Environmental Technologies (FibEnTech-UBI), Covilhã, Portugal
  6. University Nova of Lisbon, Faculty of Science and Technology, Center for Environmental and Sustainability Research (CENSE), Lisbon, Portugal
  7. Stalprodukt S.A., Bochnia, Poland
Download PDF Download RIS Download Bibtex

Abstract

One of difficulties of working with pulse mode detectors is dead time and its distorting effect on measuring with the random process. Three different models for description of dead time effect are given, these are paralizable, non-paralizable, and hybrid models. The first two models describe the behaviour of the detector with one degree of freedom. But the third one which is a combination of the other two models, with two degrees of freedom, proposes a more realistic description of the detector behaviour. Each model has its specific observation probability. In this research, these models are simulated using the Monte Carlo method and their individual observation probabilities are determined and compared with each other. The Monte Carlo simulation, is first validated by analytical formulas of the models and then is utilized for calculation of the observation probability. Using the results, the probability for observing pulses with different time intervals in the output of the detector is determined. Therefore, it is possible by comparing the observation probability of these models with the experimental result to determine the proper model and optimized values of its parameters. The results presented in this paper can be applied to other pulse mode detection and measuring systems of physical stochastic processes.
Go to article

Authors and Affiliations

Mohammad Arkani
1

  1. Nuclear Science & Technology Research Institute (NSRTI), Tehran, Iran. P.O. Box: 143995-1113
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this paper is to investigate the effects of natural uncertainties and effective parameters on the stability of plate-type rock walls. For this, the effective factors and geo-mechanical properties in the study area were obtained using field experiments. Stability analysis of rock walls was investigated for 40 scenarios in dry and saturated states. These parameters were then evaluated using Easyfit software and Markov chain analysis and Monte Carlo simulation by Rock Plane software. Comparison of the results of numerical and uncertainty methods shows that the rock walls with 60-80 degree slope are stable; and In saturated state they require stability due to the reduction of shear strength. Fixation of the rock walls was also investigated, indicating an optimum angle of 30° for the installation of the rock screw. The results show that the Monte Carlo simulation provides a simpler interpretation and the uncertainty methods are more accurate and reliable than the numerical methods.

Go to article

Authors and Affiliations

Sina Mokhtar
Mostafa Yousefira
Download PDF Download RIS Download Bibtex

Abstract

Quality profiling seeks to know the quality characteristics of products and processes to improve customer satisfaction and business competitiveness. It is required to develop new techniques and tools that upgrade and complement the traditional analysis of process variables. This article proposes a new methodology to model quality control of the process and product quality characteristics by applying optimization and simulation tools. The application in the production process of carbonated beverages allowed us to identify the most influential variables on the gas content and the degrees Brix of beverage.
Go to article

Authors and Affiliations

Jean P. Morán-Zabala
1
Juan M. Cogollo-Flórez
1

  1. Department of Quality and Production, Instituto Tecnológico Metropolitano – ITM, Colombia
Download PDF Download RIS Download Bibtex

Abstract

Value stream mapping (VSM) is a well-known lean analytical tool in identifying wastes, value, value stream, and flow of materials and information. However, process variability is a waste that traditional VSM cannot define or measure since it is considered as a static tool. For that, a new model named Variable Value Stream Mapping (V-VSM) was developed in this study to integrate VSM with risk management (RM) using Monte Carlo simulation. This model is capable of generating performance statistics to define, analyze, and show the impact of variability within VSM. The platform of this integration is under Deming’s Plan-Do-Check-Act (PDCA) cycle to systematically implement and conduct V-VSM model. The model has been developed and designed through literature investigation and reports that lead in defining the main four concepts named as; Continuous Improvement, Data Variability, Decision-Making, and Data Estimation. These concepts can be considered as connecting points between VSM, RM and PDCA.
Go to article

Authors and Affiliations

Alaa Salahuddin Araibi
1
Mohamad Shaiful Ashrul Ishak
2
ORCID: ORCID
Muhanad Hatem Shadhar
1

  1. Civil Engineering Department, Dijlah University College, Iraq
  2. Faculty of Mechanical Engineering Technology, Universiti Malaysia Perlis, Malaysia
Download PDF Download RIS Download Bibtex

Abstract

This paper concerns load testing of typical bridge structures performed prior to operation. In-situ tests of a twospan post-tensioned bridge loaded with three vehicles of 38-ton mass each formed the input of this study. On the basis of the results of these measurements an advanced FEM model of the structure was developed for which the sensitivity analysis was performed for chosen uncertainty sources. Three uncorrelated random variables representing material uncertainties, imperfections of positioning and total mass of loading vehicles were indicated. Afterwards, two alternative FE models were created based on a fully parametrised geometry of the bridge, differing by a chosen global parameter – the skew angle of the structure. All three solid models were subjected to probabilistic analyses with the use of second-order Response Surface Method in order to define the features of structural response of the models. It was observed that both the ranges of expected deflections and their corresponding mean values decreased with an increase of the skewness of the bridge models. Meanwhile, the coefficient of variation and relative difference between the mean value and boundary quantiles of the ranges remain insensitive to the changes in the skew angle. Owing to this, a procedure was formulated to simplify the process of load testing design of typical bridges differing by a chosen global parameter. The procedure allows - if certain conditions are fulfilled - to perform probabilistic calculations only once and use the indicated probabilistic parameters in the design of other bridges for which calculations can be performed deterministically.

Go to article

Authors and Affiliations

Piotr Owerko
Karol Winkelmann
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the assessment of reliability depending on the reinforcement cover thickness for elements subject to bending. Based on the experimental tests of 12 reinforced concrete beams subjected to four-point bending the numerical model was validated. In the next steps this numerical model was used for the Monte Carlo simulation. During the analyses the failure probability and the reliability index were determined by two methods – using probabilistic method –FORMand fully probabilistic method Monte Carlo with the use of variance reduction techniques by Latin hypercube sampling (LHS). The random character of input data – compressive strength of concrete, yield strength of steel and effective depth of reinforcement were assumed in the analysis. Non-parametric Spearman rank correlation method was used to estimate the statistical relationship between random variables. Analyses have shown a significant influence of the random character of effective depth on reliability index and the failure probability of bending elements.
Go to article

Bibliography

[1] ATENA, Program Documentation, Prague, 2014.
[2] L. Buda-Ozóg, “Diagnostics of technical condition of concrete elements using dynamic methods”, PhD thesis, Rzeszow University of Technology, Poland 2008 (in Polish).
[3] L. Buda-Ozóg, K. Sienkowska, and I. Skrzypczak, “Reliability of beams subjected to torsion designed using STM”, Archives of Civil Engineering, vol. 66, no. 3, pp. 555–573, 2020. DOI: 10.24425/ace.2020.134413.
[4] C. Cornell, “A probability based structural code”, American Concrete Institute Journal, no. 66, pp. 974–985, 1969.
[5] EN 1990, Eurocode – Basis of structural design. Brussels: CEN, 2002.
[6] FREET, Program Documentation, Prague 2011.
[7] GUNB reports on construction disasters from 1995 to 2009, conference materials “Construction failures”, Szczecin, 2011 (in Polish).
[8] D. Huntington and C. Lyrintzis, “Improvements to and limitations of Latin hypercube sampling. Probabilistic Engineering Mechanics”, vol. 13, no. 4, pp. 245–253, 1997.
[9] ISO 13822, Bases for design of structures – Assessment of existing structures. Geneve, Switzerland: ISO TC98/SC2, 2010.
[10] ISO 2394, General principles on reliability for structures, 2010.
[11] A.S. Nowak and K.R. Collins, “Reliability of Structures”, McGraw-Hill, p. 338, New York, 2000.
[12] Probabilistic Model Code, JCSS working material, http://www.jcss.ethz.ch/ (online), 2012.
[13] SARA, Program Documentation, Prague, 2015.
[14] I. Skrzypczak, L. Buda-Ozóg, and M. Słowik, “Projektowanie elementów żelbetowych z założoną niezawodnością”, Czasopismo Inżynierii Lądowej, Środowiska i Architektury, vol. 61, no 3/II, pp. 503–510, 2014, DOI: 10.7862/rb.2014.116.
[15] A.C.W.M. Vrouwenvelder and N. Scholten, “Assessment criteria for existing structures”, Structural Engineering International, vol. 20, no. 1, pp. 62–65, 2010.
[16] K. Winkelman, “Obliczanie niezawodności konstrukcji inżynierskich metodami symulacyjnymi oraz metodą powierzchni odpowiedzi”, PhD thesis, Gdansk University of Technology, Gdansk, 2013.
[17] S. Wolinski, “Probabilistyczne podstawy współczesnych norm projektowania”, Zeszyty Naukowe Politechniki Rzeszowskiej, vol. 58, pp. 269–288, 2011.

Go to article

Authors and Affiliations

Katarzyna Sieńkowska
1
ORCID: ORCID
Lidia Buda-Ożóg
1
ORCID: ORCID

  1. Rzeszów University of Technology, Faculty of Civil and Environmental Engineering and Architecture, Powstancow Warszawy 12, 35-859 Rzeszów, Poland

This page uses 'cookies'. Learn more