Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The foundry industry is looking for solutions that improve the quality of the finished product and solutions that reduce the negative impact of the industry on the natural environment [26]. This process leads to work on the use of new or previously unused materials for binders. Organic and inorganic foundry binders are replaced by renewable materials of plant origin to meet the requirements of both the foundry customers and the environmental and health and safety regulations. The aim of this work was to identify the applicability of renewable and organic malted barley binder in moulding sand technology. The influence of the malt binder content on dry tensile strength, dry bending strength, dry permeability, dry wear resistance and flowability were evaluated. The results show that the malted barley binder can be self-contained material binding the high-silica sand grains. Selected mechanical properties of moulding sands were found to increase with an increase in binder content. It was observed that malted barley binder creates smooth bonding bridges between high-silica sand grains.
Go to article

Bibliography

[1] Lewandowski, J.L., (1997). Moulding materials. Kraków: Akapit Publisher. (in Polish).
[2] Czerwinski, F., Mir, M. & Kasprzak, W. (2015). Application of cores and binders in metalcasting. International Journal of Cast Metals Research. 28(3), 129-139. DOI: 10.1179/1743133614Y.0000000140.
[3] Ferreira, S. H. G. da, J. C. E., Kumar, V. & Garza-Reyes, J. A. (2020). Benchmarking of cleaner production in sand mould casting companies. Management of Environmental Quality: An International Journal. 31(5), 1407-1435. DOI: 10.1108/MEQ-12-2019-0272.
[4] Fayomi, O.S.I. (2016). Hybrid effect of selected local binders on the moulding properties of river niger silica sand for industrial application. Journal of Nanoscience with Advanced Technology. 1(4), 19-23. DOI: 10.24218/jnat.2016.19.
[5] Yaro, S.A. & Suleiman, M.U. (2006), Cassava/guinea corn starches and soybean oil as core binders in sand casting of aluminium silicon (Al-Si)lloy. Journal of Engineering and Technology. 1(1), 47-55.
[6] Grabowska, B. & others. (2018). Influence of carbon fibers addition on selected properties of microwave-cured moulding sand bonded with BioCo2 binder. Archives of Foundry Engineering. 18(3), 152-160. DOI: 10.24425/123618.
[7] Chowdhury, S.I. Rashid, H. & Mumtaz, G.R. (2016) Comparison and CFD verification of binder effects in sand mould casting of aluminum alloy. ANNALS of Faculty Engineering Hunedoara - International Journal of Engineering. 14(1), 143-146.
[8] Manley, D. (2000). 9 - Meals, grits, flours and starches (other than wheat). Technology of Biscuits, Crackers and Cookies (Third Edition). (104–111). Red. Woodhead Publishing.
[9] Yu, W., Quek, W., Li, C., Gilbert, R. & Fox, G. (2018) Effects of the starch molecular structures in barley malts and rice adjuncts on brewing performance. Fermentation. 4(4), 103-124. DOI: 10.3390/fermentation4040103.
[10] Fox, G.P. (2009). Chemical composition in barley grains and malt quality. Genetics and Improvement of Barley Malt Quality. (63-98). Zhang G. & C. Li, Red. Berlin, Heidelberg: Springer Berlin Heidelberg. [11] Pezarski, F., Izdebska-Szanda I., Smoluchowska, E., Świder, R. & Pysz, A. (2011). Application of moulding sands with geopolymer binder in the manufacture of castings from aluminium alloys. Prace Instytutu Odlewnictwa. 51(2), 23-34. (in Polish).
[12] Stachowicz, M. Granat, K. & Nowak, D. (2012). Bending strength measurement as a method of binder quality assessment on the example of water-glass containing moulding sands. Archives of Foundry Engineering. 12(1), 175-178. (in Polish).
[13] Stachowicz, M., Granat, K. & Nowak, D. (2010). Studies on the possibility of more effective use of water glass thanks to application of selected methods of hardening. Archives of Foundry Engineering. 10 (spec.2), 135-140.
[14] Szymański, A., (2007). Soil mechanics. Warszawa: Wydawnictwo SGGW. (in Polish).
[15] Ochulorl, E.F., Ugboaja, J.O. & Olowomeye, O.A. (2019). Performance of kaolin and cassava starch as replacements for bentonite in moulding sand used in thin wall ductile iron castings. Nigerian Journal of Technology. 38(4), 947-956. DOI: 10.4314/njt.v38i4.18.
[16] Popoola, A.P.I., Abdulwahab, M. & Fayomi, O.S.I. (2012). Synergetic performance of palm oil (Elaeis guineensis) and pine oil (Pinus sylvestris) as binders on foundry core strength. International Journal of the Physical Sciences. 7(24), 3062-3066. DOI: 10.5897/IJPS12.347.
[17] Atanda, P.O., Akinlosotu, O.C. & Oluwole, O.O. (2014). Effect of some polysaccharide starch extracts on binding characteristics of foundry moulding sand. International Journal of Scientific & Engineering Research. 5(3), 362-367.
[18] Pezarski, F., Maniowski, Z., Izdebska-Szanda, I. & Smoluchowska, E. (2006). Investigations of moulding and core sands made with a new geopolymer binder assigned for production of steel castings. Archives of Foundry. 6(20), 65-70. (in Polish).
[19] Pezarski, F., Smoluchowska, E. & Izdebska-Szanda, I. (2008). Application of geopolymer binder in manufacturing of casting from ferrous alloys. Prace Instytutu Odlewnictwa. 48(2), 19-34. (in Polish).
[20] Jaworski, J. (2006). Research of stability of preparation system of circulating moulding sands. Archives of Foundry Engineering. 6(18), 495-500. (in Polish).
[21] Michta-Stawiarska, T. (2000). The selected iron castings defects as the effect of the sandmix quality. Solidification of Metais and Alloys. 2(43), 345-347. (in Polish).
[22] Lewandowski, J.L. (1971). Moulding materials. Warszawa Kraków: Wydawnictwo Naukowe PWN. (in Polish).
[23] Bobrowski, A. (2018). The phenomenon of dehydroxylation of selected mineral materials from the aluminosilicates group as the determinant factor of the knock-out improvement of moulding and core sands with inorganic binder. Wydawnictwo Archives of Foundry Engineering, Komisja Odlewnictwa PAN Katowice. (in Polish).
[24] Paduchowicz, P., Stachowicz, M. & Granat, K. (2017). Effect of Microwave Heating on Moulding Sand Properties with Gypsum Binder. Archives of Foundry Engineering. 17(3), 97-102.
[25] Sakwa, W., Wachelko, T. (1981). Foundry materials for molds and foundry cores. Katowice: Śląsk Publisher. (in Polish).
[26] Zhoua, X. , Yang J. & Quc. G. (2007). Study on synthesis and properties of modified starch binder for foundry. Journal of Materials Processing Technology. 183. 407-411.
[27] Aramide, F. O., Aribo, S. & Folorunso, D.O. (2011). Optimizing the moulding properties of recycled ilaro silica sand. Leonardo Journal of Sciences. 19, 93-102.
[28] Jordan, G., Eulenkamp, C., Calzada, E., Schillinger, B., Hoelzel, M., Gigler, A., Stanjek, H. & Schmahl, W.W. (2013). Quantitative in situ study of the dehydration of bentonite-bonded molding sands. Clays and Clay Minerals. 61(2), 133-140.
[29] Blaszkowski, K. (1975), Mold and core technology. Bielsko-Biała: WSiP. Wydanie III. (in Polish).
Go to article

Authors and Affiliations

B. Samociuk
1
B. Gal
1
D. Nowak
1

  1. Department of Foundry Engineering, Plastics and Automation, Wroclaw University of Technology, ul. Smoluchowskiego 25, 50-372 Wrocław, Poland

This page uses 'cookies'. Learn more