Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper addresses the problem of efficient searchingfor Nonlinear Feedback Shift Registers (NLFSRs) with a guaranteed full period. The maximum possible period for an n-bit NLFSR is 2n􀀀1 (an all-zero state is omitted). A multi-stages hybrid algorithm which utilizes Graphics Processor Units (GPU) power was developed for processing data-parallel throughput computation. Usage of the abovementioned algorithm allows giving an extended list of n-bit NLFSR with maximum period for 7 cryptographically applicable types of feedback functions
Go to article

Authors and Affiliations

Paweł Augustynowicz
Krzysztof Kanciak
Download PDF Download RIS Download Bibtex

Abstract

A desirable property of iterated cryptographic algorithms, such as stream ciphers or pseudo-random generators, is the lack of short cycles. Many of the previously mentioned algorithms are based on the use of linear feedback shift registers (LFSR) and nonlinear feedback shift registers (NLFSR) and their combination. It is currently known how to construct LFSR to generate a bit sequence with a maximum period, but there is no such knowledge in the case of NLFSR. The latter would be useful in cryptography application (to have a few taps and relatively low algebraic degree). In this article, we propose a simple method based on the generation of algebraic equations to describe iterated cryptographic algorithms and find their solutions using an SAT solver to exclude short cycles in algorithms such as stream ciphers or nonlinear feedback shift register (NLFSR). Thanks to the use of AIG graphs, it is also possible to fully automate our algorithm, and the results of its operation are comparable to the results obtained by manual generation of equations. We present also the results of experiments in which we successfully found short cycles in the NLFSRs used in Grain-80, Grain-128 and Grain-128a stream ciphers and also in stream ciphers Bivium and Trivium (without constants used in the initialization step).

Go to article

Authors and Affiliations

Władysław Dudzic
Krzysztof Kanciak

This page uses 'cookies'. Learn more