Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Visible Light Communication (VLC) is a technique for high-speed, low-cost wireless data transmission based on LED luminaries. Wireless LAN environments are a major application of VLC. In these environments, VLC is used in place of traditional systems such as Wi-Fi. Because of the physical characteristics of visible light, VLC is considered to be superior to traditional radio-based communication in terms of security. However, as in all wireless systems, the security of VLC with respect to eavesdropping, signal jamming and modification must be analyzed. This paper focuses on the aspect of jamming in VLC networks. In environments where multiple VLC transmitters are used, there is the possibility that one or more transmitters will be hostile (or “rogue”). This leads to communication disruption, and in some cases, the hijacking of the legitimate data stream. In this paper we present the theoretical system model that is used in simulations to evaluate various rogue transmission scenarios in a typical indoor environment. The typical approach used so far in jamming analysis assumes that all disruptive transmissions may be modeled as Gaussian noise, but this assumption may be too simplistic. We analyze and compare two models of VLC jamming: the simplified Gaussian and the exact model, where the full characteristics of the interfering signal are taken into account. Our aim is to determine which methodology is adequate for studying signal jamming in VLC systems.

Go to article

Authors and Affiliations

Grzegorz Blinowski
Adam Mościcki
Download PDF Download RIS Download Bibtex

Abstract

Defending against DoS (denial of service) attacks has become a great challenge, especially for institutions that provide access to their services in the public network. State-of-the-art identity concealing tools and vast number of computers connected to the network require ensuring appropriate means for entities at risk to enable defence from the particular type of threats. This article presents a concept of user authentication in IP communication. The concept consists in providing the receiver with the possibility to determine sender՚s identity at the Internet layer level. This provides both the capability of defence against DoS attacks and possibility of utilizing the presented model over existing Internet network, which is directly responsible for transmission. The authors hope that the concept is a significant step in the perception of public network data transmission.

Go to article

Authors and Affiliations

Ł. Apiecionek
J.M. Czerniak
M. Romantowski
D. Ewald
B. Tsizh
H. Zarzycki
W.T. Dobrosielski

This page uses 'cookies'. Learn more