Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 79
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Oxide fiber-reinforced Ni-base composites have long been considered as attractive heat-resistant materials. After several decades of active research, however, interest in these materials began to decline around mid-1990’s due chiefly to 1) a lack of manufacturing technology to grow inexpensive single-crystal oxide fibers to be used in structural composites, and 2) fiber strength loss during processing due to chemical interactions with reactive solutes in the matrix. The cost disadvantage has been mitigated to a large extent by the development of innovative fiber fabrication processes such as the Internal Crystallization Method (ICM) that produces monocrystalline oxide fibers in a cost-effective manner. Fiber strength loss has been an equally restrictive issue but recent work has shown that it may be possible to design creep-resistant composites even when fiber surface reconstruction from chemical interactions has degraded the strength of extracted fibers tested outside the matrix. The key issue is the optimization of the composite- and interface structure. Reaction-formed defects may be healed by the matrix (or a suitable coating material) so that the fiber residing in the matrix may exhibit diminished sensitivity to flaws as compared to fibers extracted from the matrix and tested in isolation of the matrix. Generally, the Ni-base/Al2O3 composites exhibit acceptable levels of wettability and interface strength (further improved with the aid of reactive solutes), which are required for elevated-temperature creep-resistance. In order to harness the full potential of these composites, the quality of the interface as manifested in the fiber/matrix wettability, interface composition, interphase morphology, and interface strength must be designed. We identify key issues related to the measurement of contact angle, interface strength, and chemical and structural properties at the fiber/matrix interface in the Ni/alumina composites, and present the current state-ofthe-art in understanding and designing the Ni/alumina interface. There should be no doubt that optimization of the interface- and composite microstructure through judicious control of the fabrication process and surface modification shall yield technologically promising Ni-base/oxide fiber composites.

Go to article

Authors and Affiliations

R. Asthana
S.T. Mileiko
N. Sobczak
Download PDF Download RIS Download Bibtex

Abstract

An influence of a decreased Cr content on the microstructure of the highly alloyed Cr-Ni cast steel, duplex type, melted under laboratory conditions, was characterized in the paper. The microstructure investigations were performed in the initial state and after the heat treatment (solution annealing) at 1060°C as well as the phase transformation kinetics at continuous cooling was measured. The wear resistance of the investigated cast steel was tested and compared with the 24%Cr-5%Ni-2.5%Mo cast steel. The Cr content decrease, in ferritic-austenitic cast steels (duplex), from 24-26%Cr to 18% leads to the changes of the castings microstructure and eliminating of a brittle σ phase. In dependence of the casting cooling rate, apart from ferrite and austenite, also fine martensite precipitates occur in the casting structure. It was shown that the investigated cast steel is characterised by a slightly lower wear resistance than the typical cast steel duplex grades.
Go to article

Authors and Affiliations

B. Kalandyk
Download PDF Download RIS Download Bibtex

Abstract

Ni625/WC composite coatings added with different amounts of Y 2O 3were prepared on the surface of 304 stainless steels by laser cladding. This study focused on the microstructure characteristics, microhardness, and corrosion performances of Ni625/WC composite coatings. The results showed that Y 2O 3 can effectively improve the corrosion resistance of the composite coatings. The microstructure from the bottom to the surface of composite coatings consists of plane crystal, cellular crystal, columnar crystal and equiaxed crystal. The Y 2O 3content of optimum composite coating was 1.0%. Its microhardness was three times that of matrix material. In addition, the corrosion current density of the composite coating was only 2% of Ni625/WC coating, which was attributed to the good properties of Y 2O 3 and appropriate Y 2O 3 refined microstructure.
Go to article

Authors and Affiliations

Jinling Yu
1
ORCID: ORCID
Zheng Zhentai
1
ORCID: ORCID
Shuai Li
1
ORCID: ORCID
Donghui Guo
1
ORCID: ORCID
Liang Chang
1
ORCID: ORCID

  1. Hebei University of Technology, School of Materials Science and Engineering, No. 5340, Xipingdao Road, Beichen District, Tianjin, 300401, PR China
Download PDF Download RIS Download Bibtex

Abstract

The results of research on preparations of alloy Ni-B/B composite coatings produced by chemical reduction method on a carbon steel substrate are collected in this paper. The alloy Ni-B coatings were also investigated for comparative purposes. The produced coatings were subjected to a heat treatment process. The boron powder with the particles size below 1 µm was used as the dispersion phase. The structure of the coatings was examined by X-ray diffraction method. Boron powder particles as well as surface morphology and topography were characterized by scanning electron microscopy. The roughness test, microhardness and corrosion resistance by potentiodynamic method and surface wettability tests were carried out. Analysis of the chemical composition by the EDS method showed that the boron powder particles were evenly embedded in the entire volume of the coating. Ni-B/B composite coatings are characterized by higher hardness than alloy Ni-B coatings. As a result of heat treatment, the Ni3B phase crystallized, which increased the hardness of the coating material. The incorporation of boron powder particles and heat treatment reduce the corrosion resistance of coatings. All produced coatings exhibited hydrophobic properties.

Go to article

Authors and Affiliations

A. Mazurek
W. Bartoszek
G. Cieślak
A. Gajewska-Midziałek
D. Oleszak
ORCID: ORCID
M. Trzaska
Download PDF Download RIS Download Bibtex

Abstract

Thermal analysis allows for determination of temperature specific for the beginning and the end of phase transitions occurring in studied samples. In this paper results obtained from DTA (Differential Thermal Analysis) of alloys of chemical composition referring to nickel-rich part of Ni-Al-Cr system, specifically from section Ni75Al25÷Ni65Cr35 are presented. Those alloys are based on intermetallic phase Ni3Al. Referring to measurements obtained during heating and cooling, characteristic peaks related to occurrence of phase transition of order-disorder type were noted as well as melting and solidification temperature of alloys was determined. Results of thermal analysis DTA of studied range were compared with results obtained for section Ni75Al25÷Ni75Cr25 and Ni75Al25÷Ni87Cr13, additionally results of measurements performed on high-temperature solution calorimeter were collated. Both methods presented good compatibility.
Go to article

Authors and Affiliations

T. Maciąg
Download PDF Download RIS Download Bibtex

Abstract

Modified Bohm’s formalism was applied to solve the problem of abstruse layer depth profiles measured by the Auger electron spectroscopy technique in real physical systems. The desorbed carbon/passive layer on an NiTi substrate and the adsorbed oxygen/ surface of an NiTi alloy were studied. It was shown that the abstruse layer profiles can be converted to real layer structures using the modified Bohm’s theory, where the quantum potential is due to the Auger electron effect. It is also pointed out that the stationary probability density predicts the multilayer structures of the abstruse depth profiles that are caused by the carbon desorption and oxygen adsorption processes. The criterion for a kind of break or “cut” between the physical and unphysical multilayer systems was found. We conclude with the statement that the physics can also be characterised by the abstruse measurement and modified Bohm’s formalism.

Go to article

Authors and Affiliations

E. Rówiński
M. Pietruszka
Download PDF Download RIS Download Bibtex

Abstract

The results of structure observations of Ni base superalloy subjected to long-term influence of high pressure hydrogen atmosphere at 750K

and 850K are presented. The structure investigation were carried out using conventional light-, scanning- (SEM) and transmission electron

microscopy (TEM). The results presented here are supplementary to the mechanical studies given in part I of this investigations. The

results of study concerning mechanical properties degradation and structure observations show that the differences in mechanical

properties of alloy subjected different temperature are caused by more advanced processes of structure degradation during long-term aging

at 850K, compare to that at 750K. Higher service temperature leads to formation of large precipitates of δ phase. The nucleation and

growth of needle- and/or plate-like, relative large delta precipitates proceed probably at expense strengthening γ" phases. Moreover, it can't

be excluded that the least stable γ" phase is replaced with more stable γ' precipitates. TEM observations have disclosed differences in

dislocation structure of alloy aged at 750K and 850K. The dislocation observed in alloy subjected to 750K are were seldom observed only,

while in that serviced at high stress and 850K dislocation array and dislocation cell structure was typical.

Go to article

Authors and Affiliations

M. Kaczorowski
P. Skoczylas
A. Krzyńska
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the influence of Mo addition on the structure and mechanical properties of the NiCoMnIn alloys have been studied. Series of polycrystalline NiCoMnIn alloys containing from 0 to 5 mas.% of Mo were produced by the arc melting technique. For the alloys containing Mo, two-phase microstructure was observed. Mo-rich precipitates were distributed randomly in the matrix. The relative volume fraction of the precipitates depends on the Mo content. The numbers of the Mo rich precipitates increases with the Mo contents. The structures of the phases were determined by the TEM. The mechanical properties of the alloys are strongly affected by Mo addition contents. Brittleness of the alloys increases with the Mo contents.

Go to article

Authors and Affiliations

K. Prusik
E. Matyja
M. Wąsik
M. Zubko
Download PDF Download RIS Download Bibtex

Abstract

In the present work, rapidly solidified Al-10Ni-XSc (X = 0, 1 and 2) alloys were fabricated by melt spinning under Ar atmosphere. The Effects of Sc on the microstructural and thermal properties and microhardness values were investigated by scanning electron microscopy (SEM), X-ray diffractometer (XRD) and a Vickers microhardness tester. Experimental results revealed that the addition of 2 wt. % Sc to melt-spun Al-10Ni alloys changed their brittle nature and hindered formation of cracks. The addition of Sc to melt-spun Al-10Ni alloys also changed the morphology of Al3Ni intermetallics from an acicular/needle – like to a rounded particle-like structure and led to reduction in their size. Formation of the metastable Al9Ni2 phase was observed due to the higher constitutional undercooling caused by Sc addition. A considerable improvement in microhardness value (from 95. 9 to 230. 1 HV) was observed with the addition of Sc.
Go to article

Authors and Affiliations

Fatih Kilicaslan M.
E. Karakose
Download PDF Download RIS Download Bibtex

Abstract

Cu-Ni composite nanoparticles were successfully synthesized by electrical explosion of wire (EEW) method. Cu-Ni alloy and twisted wires with various Ni contents were used as the feeding material for a 3 kV charging voltage EEW machine in an ethanol ambient chamber. The phase structure and magnetic properties of the as-fabricated samples were studied. It was established that the prepared powders after drying have a spherical form with the particle size is under 100 nm. XRD analysis indicated that the nanopowders consisted of binary Cu-Ni phases. Only pure phases of the intermetallic compound Cu-Ni (Cu0.81Ni0.19 and Cu3.8Ni) were observed in the XRD patterns of the samples. The synthesized intermetallic Cu-Ni alloy nanopowders reveal magnetic behaviors, however, the lower Ni content samples exhibited paramagnetic behaviors, meanwhile, the higher Ni content samples exposed ferromagnetic properties.

Go to article

Authors and Affiliations

Minh Thuyet-Nguyen
Jin-Chun Kim
Download PDF Download RIS Download Bibtex

Abstract

This paper reviews research at the Institute of Materials Science and Engineering, Poznań University of Technology, on the synthesis of nanocrystalline hydride electrode materials. Nanocrystalline materials have been synthesized by mechanical alloying (MA) followed by annealing. Examples of the mate2-, LaNi5 and Mg2Ni-type phases. Details on the process used and the enhancement of properties due to the nanoscale structures are presented. The synthesized alloys were used as negative electrode materials for Ni-MH battery. The properties of hydrogen host materials can be modi?ed substantially by alloying to obtain the desired storage characteristics. For example, it was found that the respective replacement of Fe in TiFe by Ni and/or by Cr, Co, Mo improved not only the discharge capacity but also the cycle life of these electrodes. The hydrogen storage properties of nanocrystalline ZrV2- and LaNi5-type powders prepared by mechanical alloying and annealing show no big di?erence with those of melt casting (polycrystalline) alloys. On the other hand, a partial substitution of Mg by Mn orAl in Mg2Ni alloy leads to an increase in discharge capacity, at room temperature. Furthermore, the e?ect of the nickel and graphite coating on the structure of some nanocrystalline alloys and the electrodes characteristics were investigated. In the case of Mg2Ni-type alloy mechanical coating with graphite e?ectively reduced the degradation rate of the studied electrode materials. The combination of a nanocrystalline TiFe-, ZrV2- and LaNi5-type hydride electrodes and a nickel positive electrode to form a Ni-MH battery, has been successful.

Go to article

Authors and Affiliations

M. Jurczyk
Download PDF Download RIS Download Bibtex

Abstract

The mechanical behavior and the change of retained austenite of nanocrystalline Fe-Ni alloy have been investigated by considering the effect of various Ni addition amount. The nanocrystalline Fe-Ni alloy samples were rapidly fabricated by spark plasma sintering (SPS). The SPS is a well-known effective sintering process with an extremely short densification time not only to reach a theoretical density value but also to prevent a grain growth, which could result in a nanocrystalline structures. The effect of Ni addition on the compressive stress-strain behavior was analyzed. The variation of the volume fraction of retained austenite due to deformation was quantitatively measured by means of x-ray diffraction and microscope analyses. The strain-induced martensite transformation was observed in Fe-Ni alloy. The different amount of Ni influenced the rate of the strain-induced martensite transformation kinetics and resulted in the change of the work hardening during the compressive deformation.

Go to article

Authors and Affiliations

D. Park
S.-J. Oh
I.-J. Shon
S.-J. Lee
Download PDF Download RIS Download Bibtex

Abstract

The development of economic and efficient processes for the removal of toxic metals from water bodies has become a priority task for environmentalists. Biosorption processes are tangible alternatives to traditional methodologies, particularly if low metal concentration, large volume and cost are considered. The present communication reports the unexploited sorption properties of the Saraca indica leaf powder (SILP) for the removal of Cd(II) and Ni(II) from aqueous media. Sorption studies using standard practices were carried out in batch experiments as a function of biomass dosage, metal concentration, contact time, particle size and pH. Sorption studies result into the standardization of optimum conditions for the removal of Cd(II) - 92.60% and Ni(II) - 46.20% as follows: biomass dosage (4.0 g), metal concentration (Cd(II) 10 μg/cm3, Ni(ll) 10 μg/cm3) and volume of the test solution (200 cm') at pH 6.5 for Cd(II) and Ni(II). The present study explores for the first time, the efficacy of Saraca indica leaf powder as a novel and environment friendly possibility to remediate heavy metal contaminated water in a cost efficient manner.
Go to article

Authors and Affiliations

M.M. Srivastava
Aditya Chauhan
Pushpa Kumari
Parul Sharma
Shalini Srivastava
Download PDF Download RIS Download Bibtex

Abstract

The 22Cr25NiWCoCu austenitic stainless steel was developed by AB Sandvik Material Technology in Sweden. Due to its high creep strength and good corrosion resistance, this material is well suited for use in superheaters in advanced coal-fired power boilers as well as in other types of steam boilers using various types of fuel. The examined material was subject to long-term ageing for the time of annealing up to 20 000 h at 700 and 750°C. Precipitation processes and microstructure stability as-received and after ageing were investigated. Examination of the microstructure was conducted using scanning electron microscopy. The identification of secondary phases was carried out by X-ray phase composition.
Using the results of the investigations of precipitation processes in the microstructure, both within the grains and at the grain boundaries, their statistical analysis was carried out. To illustrate this impact, the following parameters were used: surface area and equivalent diameter of precipitates. Based on the surface area measurements, the percentage of the phase in the reviewed photo’s total area was calculated.
Go to article

Authors and Affiliations

M. Sroka
1
ORCID: ORCID
A. Zieliński
2
ORCID: ORCID
T. Puszczało
1 3
ORCID: ORCID
K. Sówka
1 3
ORCID: ORCID
B. Hadzima
4

  1. Silesian University of Technology, Department of Engineering Materials and Biomaterials, S. Konarskiego 18A, 44-100 Gliwice, Poland
  2. Łukasiewicz Research Network – Institute for Ferrous Metallurgy, K. Miarki 12-14, 44-100 Gliwice, Poland
  3. ZRE, ul. Gen. Jankego 13, 40-615 Katowice, Poland
  4. University of Žilina, Univerzitná 8215/1, 010 26 Žilina, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The present work concerns analysis of the possibilities of synthesis of Ni-TiO2 composite coatings from electrolytes containing formate nickel complexes. A magnetic field was applied as an additional factor enabling modification of properties of the synthesized coatings through its influence on electrode processes. The presented data describes the effect of electrode potential, TiO2 concentration in the electrolyte as well as the value of the magnetic field induction vector on the deposition rate, composition, current efficiency, structure, surface states and morphology of synthesized coatings. The studies were preceded by thermodynamic analysis of the electrolyte. The obtained results indicated possibilities of synthesis of composites containing up to 0.97 wt. % of TiO2. Depending on applied electrolysis conditions current efficiency amounted to from 61.2 to 75.1%.

Go to article

Authors and Affiliations

K. Mech
Download PDF Download RIS Download Bibtex

Abstract

The research article address, the mechanical properties such as fatigue, impact strength and tribological properties of Austempered ductile iron (ADI) has been investigated. The samples of ADI iron were austenitized at 927°C for 2 hrs and later it was under austempering process for 2 hrs at a temperature range of 240°C to 400°C. Experiments under axial loading has been carried out on three different compositions (without Ni(X), 0.22 wt % Ni (X1), 0.34 wt. % Ni (X2). Fabricated test bars were converted in to as per ASTM standard samples for different tests. In order to study the influence of chunky nickel morphology studies on fatigue life and impact strength were carried out on a second set of specimens without any microstructural defect. Metallurgical analyses were performed on all the samples of heat treated samples (AF – Ausferrite, MB – Mixed bainite, M – Martensite, RA – Retained Austenite and N-Nodule) were found and compared. It was found that a mean content of 22% of chunky nickel in the microstructure (with respect to total Ni content) influence considerably the fatigue and impact strength properties of the cast iron. Moreover tribological properties of the specimens were also studied under dry sliding conditions at various sliding speed and load. The wear resistance and coefficient of friction were found to increase with increase in load and sliding speed.

Go to article

Authors and Affiliations

T. Ramkumar
S. Madhusudhanan
I. Rajendran
Download PDF Download RIS Download Bibtex

Abstract

In this study, a rare earth composite precipitation (NaREE(SO 4) 2H 2O, REE: Ce, La, Nd, Pr) powder was prepared from spent nickel hydride batteries, and cerium hydroxide was separated from its constituent rare earth elements. As Ce(OH) 3 can be oxidized more easily than other rare earth elements (La, Nd, and Pr), Ce 3+ was converted to Ce 4+ by injecting air into the leachate at 80°C for 4 h. The oxidized powder was leached using sulfuric and hydrochloric acids. Because Ce(OH) 4 has low solubility, it can be separated from other elements. Therefore, the pH of the leaching solution was adjusted for selective precipitation. To determine the crystalline phase, recovery, and grade of the recovered Ce(OH) 4, the powders were analyzed using X-ray diffraction, scanning electron microscopy, and inductively coupled plasma optical emission spectroscopy. The grade and recovery rates of the Ce(OH) 4 powder recovered from the rare earth composite precipitate using sulfuric acid as the solvent were 95% and 97%, respectively, whereas those of the powder recovered using hydrochloric acid were 96% and 95%, respectively.
Go to article

Authors and Affiliations

Boram Kim
1
ORCID: ORCID
Dae-Weon Kim
1
ORCID: ORCID
Hee Lack Choi
2
ORCID: ORCID

  1. Institute for Advanced Engineering, Advanced Material & Processing Center, 175-28 Goan-ro, 51 Beon-gil, Yongin-si, Gyeonggi, 17180, Korea
  2. Pukyong National University, Department of Material Science & Engineering, 45, Yongso-ro, Nam-gu, Busan, 48513, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

In this study, Ni20Cr coatings were obtained by cold spraying on an aluminum alloy 7075 substrate. The obtained coatings were characterized by a uniform microstructure and low porosity. The sprayed coating has the same phase composition as the powder used. Next, the cold sprayed coatings were heat treated using a TRUMPF TLF 6000 TURBO (4 kW) CO2 laser. The laser surface melting of the coatings resulted in the formation of a columnar structure and an improvement in their mechanical properties. The Ni20Cr cold sprayed coatings after additional laser melting showed lower porosity and an increase in microhardness and Young`s modulus.
Go to article

Bibliography

[1] L. Pawlowski, The science and engineering of thermal spray coatings, J. Willey & Sons Ltd, Chichester, II ed. (2008).
[2] D. Tejero-Martin, M. Rezvani Rad, A. McDonald, T. Hussain, J. Therm. Spray Technol. 28 (4), 598-644 (2019).
[3] G. Di Girolamo, E. Serra, Thermally Sprayed Nanostructured Coatings for Anti-wear and TBC Applications: State-of-the-art and Future Perspectives, Anti-Abrasive Nanocoatings, Ed., Woodhead Publishing Limited, 513-541 (2015). DOI: https://doi.org/10.1016/B978-0-85709-211-3.00020-0
[4] A . Góral, L. Lityńska-Dobrzyńska, W. Żórawski, K. Berent, J. Wojewoda-Budka, Arch. Metall. Mater. 58 (2), 335-339 (2013).
[5] C.M. Kay, J. Karthikeyan, High Pressure Cold Spray, ASM International 2016.
[6] H. Assadi, H. Kreye, F. Gartner, T. Klassen, Acta Materialia 116, 382-407 (2016).
[7] M.R. Rokni, S.R. Nutt, C.A. Widener, G.A. Crawford, V.K. Champagne, Springer. 5, 143-192 (2018).
[8] A . Góral, W. Żórawski, P. Czaja, L. Lityńska-Dobrzyńska, M. Makrenek, S. Kowalski, J. Mater. Res. 110, 49-59 (2019), DOI: 10.3139/146.111698
[9] Q. Wang, N. Birbilis, X. Zahang, Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 43, 1395-1399 (2012),
[10] C.W. Ziemian, M.M. Sharma, B.D. Bouffard, T. Nissly, T. Eden, Mater. Des. 54, 212-221(2014)
[11] L. Ajdelsztajn, B. Jodoin, J.M. Schoenung, Surf. Coat. Tech. 201, 1166-1172 (2006).
[12] M. Scendo, W. Żórawski, A. Góral, Metals 9, 890-910 (2019). DOI: 103390/met9080890
[13] E. Qin, B. Wang, W. Li, Ma, H. Lu, S. Wu, J. Therm. Spray Technol. 28, 1072-1080 (2019).
[14] D. Kong, B. Zhao, J. Alloys Compd. 705, 700-707 (2017).
[15] T . Otmianowski, B. Antoszewski, W. Żórawski, Proceesing of 15th International Thermal Spray Conference, 25-29 May, Nice, France, 1333-1336 (1998).
[16] B . Antoszewski, P. Sęk, Proc. SPIE 8703, 8703-8743 (2012). DOI: https://doi.org/10.1117/12.2015240
[17] P. Sęk, Open Eng. 10, 454-461 (2020).
[18] M. Tlotleng, M. Shukla, E. Akinlabi, S. Pityana, Surface Engineering Techniques and Application: Research Advancements 177- 221 (2014). DOI: https://doi.org/10.4018/978-1-4666-5141-8.ch006
[19] D.K. Christoulis, M. Jeandin, E. Irissou, J.G. Legoux, W. Knapp, Laser-Assisted Cold Spray (LACS) InTech. 59-96 (2012). DOI: https://doi.org/10.5772/36104
[20] S.B. Mishra, K. Chandra, S. Prakash, J. Tribol. 128, 469-475 (2006) DOI: 10.1115/1.2197843
[21] A. Mangla, V. Chawla, G. Singh, Int. J. Eng. Sci. Res. Technol. 6, 674-686 (2017).
[22] N. Abu-Warda, A.J. López, M.D. López, M.V. Utrilla, Surf. Coat. Tech. 381, 125133 (2020).
[23] EN ISO 6507-1: 2018.
[24] https://www.scribd.com/document/423195204/DSMTS-0109-2- Ni20Cr-Powders
Go to article

Authors and Affiliations

D. Soboń
1
ORCID: ORCID

  1. Kielce University of Technology, 7 Tysiąclecia Państwa Polskiego Av., 25-314 Kielce, Poland
Download PDF Download RIS Download Bibtex

Abstract

The goal of the work was to investigate the influence of silver addition on the microstructure of CuNi2Si1 alloys. The investigated copper alloy was cast and then supersaturated, plastically deformed on the Gleeble 3800 simulator and finally aged. Structural changes were examined using optical microscopy, scanning electron microscopy (SEM) and transmission electron microscopy (TEM). Orientation mapping was completed FEI Quanta 3D field emission gun scanning electron microscope (SEM) equipped with TSL electron backscattered diffraction (EBSD) system. The effect of structural and microstructural changes on hardness and conductivity was also investigated. Based on the mechanical tests it was found, that the mechanical properties and conductivity are improved due to heat and plastic treatment. It was also found that the precipitation hardening raises the hardness to the level of 40% whilst an increase in conductivity by 20% is observed.
Go to article

Authors and Affiliations

Beata Krupińska
1
ORCID: ORCID
Robert Chulist
2
Marcin Kondracki
3
ORCID: ORCID
Krzysztof Labisz
4

  1. Silesian University of Technology, Faculty of Mechanical Engineering, Department of Engineering Materials and Biomaterials, 44-100 Gliwice, Konarskiego St. 18a, Poland
  2. Institute of Metallurgy and Materials Science of Polish Academy of Sciences, 30-059 Krakow, Reymonta St. 25, Poland
  3. Silesian University of Technology, Faculty of Mechanical Engineering, Department of Foundry Engineering, 44-100 Gliwice, Konarskiego St. 18a, Poland
  4. Silesian University of Technology, Faculty of Transport and Aviation Engineering, Department of Railway Transport, 44-100 Gliwice, Konarskiego St. 18a, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the present study, the corrosion behaviors of amorphous-nanocrystalline Ni50Ti50 shape memory alloy with different crystallite sizes were investigated. The Ni50Ti50 homogenized specimens were hot rolled and annealed at 950°C. Thereafter, the nanocrystalline Ni50Ti50 specimens with different crystalline sizes in the range of 40-350 nm were prepared by cold rolling and annealing at temperature range of 400 to 900oC. The corrosion resistance of Ni50Ti50 specimen with coarse grain size has significantly increased after cold rolling as a result of the formation of amorphous-nanocrystalline structure. The amorphous and nanocrystalline (with the crystallite size of about 40 nm) Ni50Ti50 samples exhibited the best corrosion resistance in the 5% HCl electrolyte with the corrosion potential and corrosion current density of about –197 mV and 2.34×10–6 A/cm2, respectively. This effect can be attributed to the higher density of crystalline defects in amorphous and nanocrystalline structures to quickly form protective films on the surface.

Go to article

Authors and Affiliations

H. Aghabeygzadeh
E. Mohammad Sharifi
M. Tavoosi
Download PDF Download RIS Download Bibtex

Abstract

Surface coating technology, as the main technology to improve the fatigue life of mechanical systems, has been well applied in mechanical equipment. The present study aimed to explore low-cost surface coating preparation technology using inexpensive rice husk as the research object, and the pyrolysis process behavior of rice husk was analyzed. The Ni60/SiO 2 coating was prepared on the surface of the 45# steel substrate using the pyrolysis product SiO 2 fiber as the reinforcing phase and supersonic plasma-spraying equipment. The results showed no defects such as cracks, pores, and inclusions in the prepared coating. The nanohardness of the Ni60/SiO 2 coating reached 6506 μN, and the average friction coefficient reached 0.42. In the friction-and-wear experiment, the Ni60/SiO 2 coating was manifested as an abrasive wear mechanism.
Go to article

Authors and Affiliations

Chunxue Wei
1
Hongbing Li
1

  1. Henan Light Industry Vocational College, Zhengzhou, 450002, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

Gaseous nitriding of binary Ni-Cr solid-solution alloys was studied at 1125ºC over the range 1 to 6000 bar of N2-pressure. At the specified temperature the nitriding response of the Ni-Cr alloys depends on the Cr-content in the initial alloy and activity (fugacity) of nitrogen at the gas/metal interface. Transition from cubic δ-CrN to hexagonal β-Cr2N precipitation occurs within the reaction zone after nitrogenization at 1125ºC under nitrogen pressure 100-6000 bar when chromium content in the initial alloy is 28 at. % or higher. It was found that a ternary phase, π (Cr12.8Ni7.2N4.0) is formed inside the Ni32Cr alloy upon cooling in nitrogen after nitriding at 1125ºC and 1 bar of N2. Experimental evidence is presented that π-phase is involved in peritectoid relations with β-Cr2N and γ-(Ni-Cr) solid solution. It was also demonstrated that nitriding behaviour of the Ni-Cr alloy can be rationalized using pertinent phase diagram information, but, in some cases, effect of mechanical stresses induced upon the internal precipitation can vitiate this prediction.
Go to article

Authors and Affiliations

A. Kodentsov
1
ORCID: ORCID
C. Cserháti
2

  1. Mat-Tech BV, Development & Testing, Son, The Netherlands
  2. University of Debrecen Hungary Faculty of Sciences and Technology, Department of Solid State Physics, Hungary
Download PDF Download RIS Download Bibtex

Abstract

In this paper the development and method of production of modern, Ni-free sintered structural steels containing Cr, Mn and Mo, enabling the production of structural sintered steels in industrial conditions, using safe, with low H2-content, sintering atmospheres is presented. For this purpose, the analysis of microstructure and mechanical properties of these sintered structural steels produced in different processing conditions and also the connections between the microstructure of sintered material and its mechanical properties, was presented. Following the investigations, the appropriate chemical composition of sintered Ni-free steels with properties which are comparable or even better than those of sintered structural steels containing rich and carcinogenic nickel was choosen. Additionally, in the paper the properties of electrolitically coated carbon steels were presented, as the beginning of investigation for improving the mechanical properties of alloyed, structural sintered steels.

Go to article

Authors and Affiliations

M. Sułowski
M. Tenerowicz-Żaba
R. Valov
V. Petkov
Download PDF Download RIS Download Bibtex

Abstract

Samples prepared using various additive manufacturing methods were compared in terms of structure, texture, transformation temperature and superelastic properties. Samples manufactured using laser engineered net shaping (LENS) method showed texture several degrees deviated from the <001> build direction, however with composition near to the initial powder composition, enabling superelastic effect. The electron beam additive manufacturing (EBAM) samples showed martensitic structure at room temperature due to a shift of transformation temperatures to the higher range. This shift occurs due to a lower Ni content resulting from different processing conditions. However, EBAM method produced sharper <001> texture in the build direction and made it possible to obtain a good superelastic effect above room temperature. Intermetallic particles of size 0.5-2 mm were identified as Ti2Ni phase using EDS and electron diffraction analyses. This phase was often formed at the grain boundaries. Contrary to the LENS method, the EBAM prepared samples showed Ni-rich primary particles resulted from different processing conditions that reduce the Ni content in the solid solution thus increase the martensitic transformation temperature. Ageing at 500°C allowed for shifting the martensitic transformation temperatures to the higher range in both, LENS and EBAM, samples. It resulted from the formation of Ni rich coherent precipitates. In samples prepared by both methods and aged at 500°C, the presence of martensite B19’ twins was observed mainly on {011} B19’ planes.
Go to article

Authors and Affiliations

J. Dutkiewicz
1
ORCID: ORCID
Ł. Rogal
1
ORCID: ORCID
M. Węglowski
2
ORCID: ORCID
T. Czujko
3
ORCID: ORCID
T. Durejko
3
ORCID: ORCID
E. Cesari
4
ORCID: ORCID

  1. Institute of Metallurgy and Materials Science, PAS, 25, Reymonta Str., 30-059 Krakow, Poland
  2. Łukasiewicz – Institute of Welding, Błogosławionego Czesława 16-18, 44-100 Gliwice, Poland
  3. Military University of Technology, 2, Institute of Materials Science and Engineering, Gen. S. Kaliskiego Str., 00-908, Warsaw, Poland
  4. University of Balearic Islands, Department of Physics, E07122, Palma de Mallorca, Spain

This page uses 'cookies'. Learn more