Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper the development and method of production of modern, Ni-free sintered structural steels containing Cr, Mn and Mo, enabling the production of structural sintered steels in industrial conditions, using safe, with low H2-content, sintering atmospheres is presented. For this purpose, the analysis of microstructure and mechanical properties of these sintered structural steels produced in different processing conditions and also the connections between the microstructure of sintered material and its mechanical properties, was presented. Following the investigations, the appropriate chemical composition of sintered Ni-free steels with properties which are comparable or even better than those of sintered structural steels containing rich and carcinogenic nickel was choosen. Additionally, in the paper the properties of electrolitically coated carbon steels were presented, as the beginning of investigation for improving the mechanical properties of alloyed, structural sintered steels.

Go to article

Authors and Affiliations

M. Sułowski
M. Tenerowicz-Żaba
R. Valov
V. Petkov
Download PDF Download RIS Download Bibtex

Abstract

A 20 gram batch weight of NiTi alloy, with a nominal equiatomic composition, was produced by mechanical alloying with milling times of 100, 120, and 140 hours. The differential scanning calorimetry was used to analyze the progress of the crystallization process. The X-ray diffraction examined the crystal structure of the alloy at individual crystallization stages. The observation of the powders microstructure and the chemical composition measurement were carried out using a scanning electron microscope equipped with an energy-dispersive detector. After the milling process, the alloy revealed an amorphous-nanocrystalline state. The course of the crystallization process was multi-stage and proceeded at a lower temperature than the pure amorphous state. The applied production parameters and the stage heat treatment allowed to obtain the alloy showing the reversible martensitic transformation with an enthalpy of almost 5 J/g.
Go to article

Authors and Affiliations

T. Goryczka
1
ORCID: ORCID
G. Dercz
1
ORCID: ORCID

  1. University of Silesia in Katowice, Institute of Materials Science, 75 Pułku Piechoty 1A Str., 41-500 Chorzow, Poland
Download PDF Download RIS Download Bibtex

Abstract

Ultra-precision testing is a very important procedure to secure the reliability of the products as well as for the technology development in the areas of semiconductor and display. Accordingly, companies manufacturing equipment for testing of semiconductor and display have been continuously executing researches for the improvement of the performances of test sockets used in test equipment.

Through this study, characteristics of the materials in accordance with the mechanical and electrical properties of Ni-30wt%Co alloy and newly developed Cu-2wt%Be alloy were analyzed in order to select the probe pin material of the socket, which is a key component used in the semiconductor testing equipment. In addition, finite element interpretation was executed by using Ansys Workbench 14.0 to comparatively analyze the finite element interpretation results and experimental results. Experiment was executed for the mechanical properties including tensile strength, elasticity modulus, specific heat, thermal expansion coefficient and Contact Force, for electrical properties, experiment on surface resistance, specific resistance and electrical conductivity was executed to measure the properties. It was confirmed that the results of finite element interpretation and experiment displayed similar trend and it is deemed that the Contact Force value was superior for Be-Co alloy.

Through this study, it was confirmed that the newly developed Be-Co alloy is more appropriate as probe pin material used as the core component of test socket used in the semiconductor testing equipment than the existing Ni-Co alloy.

Go to article

Authors and Affiliations

Jin-Young Park
Young-Choon Kim
Jae-Gyun Kim
Download PDF Download RIS Download Bibtex

Abstract

The effects of carbon content on the austenite stability and strain-induced transformation of nanocrystalline Fe-11% Ni alloys were investigated using X-ray analysis and mechanical tests. The nanocrystalline FeNiC alloy samples were rapidly fabricated using spark plasma sintering because of the extremely short densification time, which not only helped attain the theoretical density value but also prevented grain growth. The increased austenite stability resulted from nanosized crystallites in the sintered alloys. Increasing compressive deformation increased the volume fraction of strain-induced martensite from austenite decomposition. The kinetics of the strain-induced martensite formation were evaluated using an empirical equation considering the austenite stability factor. As the carbon content increased, the austenite stability was enhanced, contributing to not only a higher volume fraction of austenite after sintering, but also to the suppression of its strain-induced martensite transformation.

Go to article

Authors and Affiliations

Seung-Jin Oh
Byoung-Cheol Kim
Man-Chul Suh
In-Jin Shon
Seok-Jae Lee
Download PDF Download RIS Download Bibtex

Abstract

Despite of extensive researches for decades, there are many unclear aspects for recrystallization phenomenon in the cold rolled Ni-based alloys. Hence, different thermal cycles were conducted in order to determine microstructural evolutions and its effect on the magnetic and mechanical properties of a 90% cold-rolled thin sheet of a Ni-Fe-Cu-Mo alloy (~80 μm). The obtained results revealed that the recrystallization was started at a temperature of 550°C and was completed after 4 hours. An increase in the number of annealing twins was observed with an increase in annealing temperature, which was due to a bulging and long-range migration of grain boundaries during the discontinuous recrystallization. Ordering transformation occurred in the temperature range of 400-600°C and as a result, hardness, yield strength, and UTS were increased, while with an increase in the annealing temperature these mechanical properties were decreased. Maximum toughness was obtained by annealing at 550°C for 4 hours, while the highest elongation was obtained after annealing at 1050°C, where other mechanical properties including toughness, hardness, yield strength, and UTS were decreased due to the grain growth and secondary recrystallization. Moreover, coercivity and remanence magnetization were decreased from 4.5 Oe and 3.8 emu/g for the cold rolled sample to below 0.5 Oe and 0.15 emu/g for the sample annealed at 950°C, respectively.
Go to article

Authors and Affiliations

Azizeh Mahdavi
1
ORCID: ORCID
Ali Reza Mashreghi
1
ORCID: ORCID
Saeed Hasani
1
ORCID: ORCID
Mohammad Reza Kamali
1
ORCID: ORCID

  1. Yazd University, Department of Mining and Metallurgical Engineering, 89195-741, Yazd, Iran
Download PDF Download RIS Download Bibtex

Abstract

Mixture of nickel and titanium powders were milled in planetary mill under argon atmosphere for 100 hours at room temperature. Every 10 hours the structure, morphology and chemical composition was studied by X-ray diffraction method (XRD), scanning electron microscope (SEM) as well as electron transmission microscope (TEM). Analysis revealed that elongation of milling time caused alloying of the elements. After 100 hours of milling the powders was in nanocrystalline and an amorphous state. Also extending of milling time affected the crystal size and microstrains of the alloying elements as well as the newly formed alloy. Crystallization of amorphous alloys proceeds above 600°C. In consequence, the alloy (at room temperature) consisted of mixture of the B2 parent phase and a small amount of the B19’ martensite. Dependently on the milling time and followed crystallization the NiTi alloy can be received in a form of the powder with average crystallite size from 1,5 up to 4 nm.

Go to article

Authors and Affiliations

P. Salwa
T. Goryczka
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this paper, a study was carried out to investigate the surface roughness and material removal rate of low carbon NiTi shape memory alloy (SMA) machined by Wire Electro Spark Erosion (WESE) technique. Experiments are designed considering three parameters viz, spark ON time (SON), spark OFF time (SOFF), and voltage (V) at three levels each. The surface roughness increased from 2.1686 μm to 2.6869 μm with an increase in both SON time, SOFF time and a decrease in voltage. The material removal rate increased from 1.272 mm3/min to 1.616 mm3/min with an increase in SON time but a varying effect was observed the SOFF time and voltage were varied. The analysis revealed that the intensity and duration of the spark had an unswerving relation with the concentration of the microcracks and micropores. More microcracks and micropores were seen in the combination of SON = 120 µs, voltage = 30 V. The concentration of the microcracks and micropores could be minimised by using an appropriate parameter setting. Therefore, considering the surface analysis and material removal, the low carbon NiTi alloy is recommended to machine with 110 μs – 55 μs – 30 v (SON – SOFF – V respectively), to achieve better surface roughness with minimal surface damage.
Go to article

Authors and Affiliations

Ebenezer George
1
ORCID: ORCID
Adam Khan M.
1
ORCID: ORCID
Chellaganesh Duraipandi
1
Winowlin Jappes J.T.
1
Julfikar Haider
2

  1. School of Automotive and Mechanical Engineering and Centre for Surface Engineering, Kalasalingam Academy of Research and Education, Tamil Nadu, India
  2. Manchester Metropolitan University, Advanced Materials and Surface Engineering (AMSE) Research Centre, Chester Street, M1 5GD, UK
Download PDF Download RIS Download Bibtex

Abstract

We investigated the austenite stability and mechanical properties in FeMnNiC alloy fabricated by spark plasma sintering. The addition of Mn, Ni, and C, which are known austenite stabilizing elements, increases its stability to a stable phase existing above 910°C in pure iron; as a result, austenitic microstructure can be observed at room temperature, depending on the amounts of Mn, Ni, and C added. Depending on austenite stability and the volume fraction of austenite at a given temperature, strain-induced martensite transformation during plastic deformation may occur. Both stability and the volume fraction of austenite can be controlled by several factors, including chemical composition, grain size, dislocation density, and so on. The present study investigated the effect of carbon addition on austenite stability in FeMnNi alloys containing different Mn and Ni contents. Microstructural features and mechanical properties were analyzed with regard to austenite stability.

Go to article

Authors and Affiliations

Seunggyu Choi
Junhyub Jeon
ORCID: ORCID
Namhyuk Seo
ORCID: ORCID
Young Hoon Moon
In-Jin Shon
Seok-Jae Lee
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

The results of research on preparations of alloy Ni-B/B composite coatings produced by chemical reduction method on a carbon steel substrate are collected in this paper. The alloy Ni-B coatings were also investigated for comparative purposes. The produced coatings were subjected to a heat treatment process. The boron powder with the particles size below 1 µm was used as the dispersion phase. The structure of the coatings was examined by X-ray diffraction method. Boron powder particles as well as surface morphology and topography were characterized by scanning electron microscopy. The roughness test, microhardness and corrosion resistance by potentiodynamic method and surface wettability tests were carried out. Analysis of the chemical composition by the EDS method showed that the boron powder particles were evenly embedded in the entire volume of the coating. Ni-B/B composite coatings are characterized by higher hardness than alloy Ni-B coatings. As a result of heat treatment, the Ni3B phase crystallized, which increased the hardness of the coating material. The incorporation of boron powder particles and heat treatment reduce the corrosion resistance of coatings. All produced coatings exhibited hydrophobic properties.

Go to article

Authors and Affiliations

A. Mazurek
W. Bartoszek
G. Cieślak
A. Gajewska-Midziałek
D. Oleszak
ORCID: ORCID
M. Trzaska
Download PDF Download RIS Download Bibtex

Abstract

One of the most important factors directly affecting microstructure and mechanical properties in directional solidification process is secondary dendrite arm spacing (SDAS). It is very important to measure the SDAS and examine the factors that may affect them. To investigate the effect of growth rate on the SDAS, the alloy specimens were directional solidified upward with different growth rates ( V = 8.3-83.0 μm/s) at a constant temperature gradient ( G = 4 K/mm) in a Bridgman-type growth apparatus. After the specimens are directionally solidified, they were exposed to metallographic processes in order to observe the dendritic solidification structure on the longitudinal section of the specimens. Coarsen secondary dendrite arm spacings (λ 2C) were measured excluding the first arms near the tip of the dendrite. Local solidification times ( tf) were calculated by ratio of spacings to growth rates. It was determined that the tf values decreased with increasing V values. The relationships between tf and λ 2C were defined by means of the binary regression analysis. Exponent values of tf were obtained as 0.37, 0.43, 0.46 and 0.47 according to increasing V values, respectively. These exponent values are close to the exponent value (0.33) predicted by the Rappaz-Boettinger theoretical model and good agreement with the exponent values (0.33-0.50) obtained by other experimental studies.
Go to article

Authors and Affiliations

Erkan Üstün
1
ORCID: ORCID
Emin Çadirli
1
ORCID: ORCID

  1. Niğde Ömer Halisdemir University, Institute of Science, Department of Physics, Niğde, Turkey

This page uses 'cookies'. Learn more