Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The aim of this paper is to evaluate the fatigue resistance of austenitic nodular cast iron and to compare it with other types of nodular cast irons. The austenitic nodular cast iron, used for the experiments, was alloyed by 13% nickel and 7% manganese (EN-GJSA-XNiMn13-7) to obtain an austenitic matrix. The microstructure was studied using light metallographic microscopy. Mechanical properties were investigated by tensile test, impact bending test and Brinell hardness test. Fatigue tests were carried out at sinusoidal cyclic push-pull loading at ambient temperature. The results of fatigue tests were compared with the fatigue properties of ferrite-pearlitic nodular cast iron and pearlite-ferritic nodular cast iron. Experimental results show that NiMn-type of austenitic nodular cast iron has lower tensile strength and hardness, but higher elongation and absorbed energy than the compared types of nodular cast iron. However, austenitic nodular cast iron has lower fatigue limit.
Go to article

Authors and Affiliations

A. Vaško
1
ORCID: ORCID
M. Uhríčik
1
ORCID: ORCID
V. Kaňa
2
ORCID: ORCID

  1. University of Žilina, Faculty of Mechanical Engineering, Department of Materials Engineering, Žilina, Slovakia
  2. Brno University of Technology, Faculty of Mechanical Engineering, Department of Foundry Engineering, Brno, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The current practice of reconstruction of oxidized turbine parts (due to hot corrosion) using arc welding methods facilitates restoration of the nominal shapes and dimensions, as well as other attributes and features. Intense development of 3D additive methods and techniques contributes to the repair/modification of different parts including gas turbine (GT) hardware. The article proves the viability of the concept of using a robotized additive arc welding metal active gas (MAG) process to repair and modify gas turbine diaphragms using different filler materials from the substrate. The industrialized robotic additive process (hybrid repair) shows that very good results were achieved if the diaphragm is cast of nickel-iron and the filler material for welding the passes is austenitic stainless steel (for instance 308 LSi). This is one of the novelties introduced to the repair process that was granted a patent (US11148235B2) and is already implemented in General Electric Service Centers.
Go to article

Authors and Affiliations

Piotr Steckowicz
1
ORCID: ORCID
Paweł Pyrzanowski
2
ORCID: ORCID
Efe Bulut
3

  1. GE Power Sp. z o.o. – Oddział Engineering Innovation Center w Warszawie, Al. Krakowska 110/114, 02-256 Warsaw, Poland
  2. Warsaw University of Technology, Institute of Aeronautics and Applied Mechanics, ul. Nowowiejska 24, 00-665 Warsaw, Poland
  3. GE Marmara Technology Center Müh. Hiz. Ltd. Sti. Tubitak-Mam Teknoloji Serbest Bolgesi, 41400, Gebze/Kocaeli, Turkey

This page uses 'cookies'. Learn more