Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The effects of different types of process control agents (PCA) on the microstructure evolution of Ni-based oxide dispersion-strengthened superalloy have been investigated. Alloy synthesis was performed on elemental powders having a nominal composition of Ni-15Cr-4.5Al-4W-2.5Ti-2Mo-2Ta-0.15Zr-1.1Y2O3 in wt % using high energy ball milling for 5 h. The prepared powders are consolidated by spark plasma sintering at 1000oC. Results indicated that the powder ball-milled with ethanol as PCA showed large particle size, low carbon content and homogeneous distribution of elemental powders compared with the powder by stearic acid. The sintered alloy prepared by ethanol as PCA exhibited a homogeneous microstructure with fine precipitates at the grain boundaries. The microstructural characteristics have been discussed on the basis of function of the PCA.

Go to article

Authors and Affiliations

Ju-Yeon Han
Hyunji Kang
Sung-Tag Oh
Download PDF Download RIS Download Bibtex

Abstract

High temperature vacuum brazing is a well-known and commonly used method for joining of nickel based elements and subassemblies of gas turbines, both for stationary and aviation applications. Despite the fact that currently used brazing filler metals meet stringent requirements of aviation and energetic industries, a lot of effort is spent on improving operational properties of the joints through modification of chemical composition or brazing process parameters. This paper aims for both of these aspects – its purpose is evaluation of the impact of filler metal composition, brazing gap width and process conditions on the microstructure of joints between sheet metal elements made of Hastelloy X nickel superalloy. Two different Ni-based filler materials (BNi-2 and Amdry 915) were investigated, based on the results of light and scanning electron microscopy evaluations, energy dispersive X-ray spectroscopy and hardness measurements.
Go to article

Authors and Affiliations

K. Krystek
1 2
ORCID: ORCID
K. Krzanowska
1
ORCID: ORCID
M. Wierzbińska
1
ORCID: ORCID
M. Motyka
1
ORCID: ORCID

  1. Rzeszow University of Technology, Department of Materials Science, 12 Powstańców Warszawy Av., 35-959 Rzeszów, Poland
  2. Pratt & Whitney Rzeszów S.A., 120 Hetmańska Str., 35-078 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

CM247LC alloy was manufactured by using selective laser melting (SLM) process, one of the laser powder bed fusion ­(L-PBF) methods. The hot isostatic pressing (HIP) process was additionally conducted on the SLM-built CM247LC to control its microstructures and defects. The high temperature oxidation property was investigated, and it was compared with conventional DS247LC sample (reference) prepared via the directional solidification process. The L-PBF HIP sample showed blocky-type MC carbides generated along the grain boundary with average size of about 200 nm. A semi-spherical primary γ' phase of size 0.4-1.0 μm was also observed inside the grains. Moreover, the DS247LC sample displayed a coarse eutectic γ' phase and many script-type MC carbides. Furthermore, cuboidal-type γ' with an average size of about 0.5 μm was detected. High-temperature oxidation tests were conducted at 1000°C and 1100°C for 24 hours. The results at 1100°C oxidation temperature showed that the measured oxidation weight gains for HIP and DS247LC were 1.96 mg/cm2 and 2.26 mg/cm2, respectively, indicating the superior high-temperature oxidation resistance of the L-PBF HIP sample. Based on the above results, a high-temperature oxidation mechanism of the CM247LC alloys manufactured by the SLM process and the directional solidification process has been proposed.
Go to article

Authors and Affiliations

Jung-Uk Lee
1
Young-Kyun Kim
2
ORCID: ORCID
Seong-Moon Seo
2
Kee-Ahn Lee
1
ORCID: ORCID

  1. Inha University, Department of Materials Science and Engineering, Incheon 22212, Republic of Korea
  2. Korea Institute of Materials Science, Changwon 51508, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

An optimum route to fabricate the Ni-based superalloy with homogeneous dispersion of Y2O3 particles is investigated. Ni-based ODS powder was prepared by high-energy ball milling of gas-atomized alloy powders and Y2O3 particles treated with a high-pressure homogenizer. Decrease in particle size and improvement of dispersion stability were observed by high-pressure homogenization of as-received Y2O3 particles, presumably by the powerful cavitation forces and by collisions of the particles. Microstructural analysis for the ball-milled powder mixtures reveal that Ni-based ODS powders prepared from high-pressure homogenization of Y2O3 particles exhibited more fine and uniform distribution of Ni and Y elements compared to the as-received powder. These results suggested that high-pressure homogenization process is useful for producing Ni-based superalloy with homogeneously dispersed oxide particles.
Go to article

Bibliography

[1] T.M. Pollock, T. Sammy, J. Propul. Power 22, 361 (2006).
[2] W. Betteridge, S.W.K. Shaw, Mater. Sci. Technol. 3, 682 (1987).
[3] G . Quan, Y. Zhang, P. Zhang, Y. Mai, W. Wang, Trans. Nonferrous Met. Soc. China 31, 438 (2021).
[4] W. Sha, H.K.D.H. Bhadeshia, Metall. Mater. Trans. A 25, 705 (1994).
[5] G .W. Noh, Y.D. Kim, K.-A. Lee, H.-J. Kim, J. Korean Powder Metall. Inst. 27, 8 (2020).
[6] J.S. Benjamin, Metall. Trans. 1, 2943 (1970).
[7] S.K. Kang, R.C. Benn, Metall. Trans. A 16, 1285 (1985).
[8] Y.-I. Lee, E.S. Lee, S.-T. Oh, J. Nanosci. Nanotechnol. 21, 4955 (2021).
[9] J.H. Schneibel, S. Shim, Mater. Sci. Eng. A 488, 134 (2008).
[10] Q.X. Sun, T. Zhang, X.P. Wang, Q.F. Fang, T. Hao, C.S. Liu, J. Nucl. Mater. 424, 279 (2012).
[11] J. Kluge, G. Muhrer, M. Mazzotti, J. Supercrit. Fluids 66, 380 (2012).
[12] O . Mengual, G. Meunier, I. Cayré, K. Puech, P. Snabre, Talanta 50, 445 (1999).
[13] W.D. Pandolfe, J. Dispersion Sci. Technol. 2, 459 (1981).
[14] M. Luo, X. Qi, T. Ren, Y. Huang, A.A. Keller, H. Wang, B. Wu, H. Jin, F. Li, Colloids Surf. A 533, 9 (2017).
[15] C. Suryanarayana, Prog. Mater. Sci. 46, 1 (2001).
Go to article

Authors and Affiliations

Jongmin Byun
1
ORCID: ORCID
Young-In Lee
1
ORCID: ORCID
Sung-Tag Oh
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Department of Materials Science and Engineering & The Institute of Powder Technology, Seoul 01811, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

This study explores the hydrogen embrittlement behaviour of two Ni-based superalloys using electrochemical hydrogen charging. Two types of tensile specimens with different geometry for the Haynes 617 and Hastelloy X alloys were electrochemically hydrogen-charged, and then a slow strain rate test was conducted to investigate the hydrogen embrittlement behaviour. Unlike the ASTM standard specimens, two-step dog-bone specimens with a higher surface-area-to-volume ratio showed higher sensitivity to hydrogen embrittlement because hydrogen atoms are distributed mostly on the surface area. On the other hand, the Haynes 617 alloy had a lower hydrogen embrittlement resistance than that of the Hastelloy X alloy due to its relatively large grain size and the presence of precipitates at grain boundaries. The Haynes 617 alloy primarily showed an intergranular fracture mode with cracks from the slip band, whereas the Hastelloy X alloy exhibited a combination of transgranular and intergranular fracture behavior under hydrogen-charged conditions.
Go to article

Authors and Affiliations

Jae-Yun Kim
1
ORCID: ORCID
Sang-Gyu Kim
1
ORCID: ORCID
Byoungchul Hwang
1
ORCID: ORCID

  1. Seoul National University of Science and Technology, Depart ment of Materials Science and Engineering, 232 Gongneung-ro, Nowon-gu, Seoul 01811, Republic of Korea

This page uses 'cookies'. Learn more