Search results

Filters

  • Journals

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The spatial distribution of snow thickness on glaciers is driven by a set of climatological, meteorological, topographical and orographic conditions. This work presents results of snow accumulation studies carried out from 2006 to 2009 on glaciers of different types: valley glacier, ice plateau and ice cap. In order to determine snow depth, a shallow radio echo−sounding method was used. Based on the results, the following snow distribution patterns on Svalbard glaciers have been distinguished: precipitation pattern, precipitation−redistribution pattern, redistribution pattern and complex pattern. The precipitation pattern assumes that the snow distribution on glaciers follows the altitudinal gradient. If the accumulation gradient is significantly modified by local factors like wind erosion and redeposition, or local variability of precipitation, the accumulation pattern turns into the precipitation−redistribution pattern. In the redistribution pattern, local factors play a crucial role in the spatial variability of snow depth. The complex pattern, however, demonstrates the co−existence of different snow distribution patterns on a single glacial object (glacier/ice cap/ice field).
Go to article

Authors and Affiliations

Mariusz Grabiec
Tomasz Budzik
Dariusz Puczko
Grzegorz Gajek
Download PDF Download RIS Download Bibtex

Abstract

We present the variability of the thermal state and thickness of permafrost active layer at the raised marine beaches in Svalbard. The investigations were carried out using direct probing, thaw tube, ground temperature and radar soundings at Holocene strand plains 10–20 m a.s.l. in Fuglebergsletta (SW Spitsbergen) and at the shore of Kinnvika Bay (Nordaustlandet). Their results were compared to those obtained at other coastal sites in Svalbard. The ground temperature measurements were conducted in 2009 on August, recognized as the standard month for the maximum thawing during the last decade. The studied sites are typical for close to extreme active layer conditions on Svalbard. In Hornsund, the thawing depth exceeded 2 m, while in Kinnvika the active layer was thinner than 1 m. In Svalbard, the depth of thawing decreases generally from south to north and from the open sea coast to the central parts of islands. These differences are the consequence of diverse climatic conditions strongly determined by the radiation balance modified by a number of regional ( e.g. ocean circulation) and local ( e.g. duration of snow deposition) conditions.
Go to article

Authors and Affiliations

Piotr Dolnicki
Tomasz Budzik
Mariusz Grabiec
Dariusz Puczko
Łukasz Gawor
Jan Klementowski

This page uses 'cookies'. Learn more