Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Optical coherence tomography (OCT) – a kind of optical counterpart of ultrasound imaging – is continually being improved as image contrast boosting techniques are developed.

Go to article

Authors and Affiliations

Karol Karnowski
Download PDF Download RIS Download Bibtex

Abstract

O tym, czym jest tomografia optyczna OCT i do czego służy oraz jakie są najnowsze metody usprawniania jej działania.

Go to article

Authors and Affiliations

Karol Karnowski
Download PDF Download RIS Download Bibtex

Abstract

Optical low-coherence interferometry is one of the most rapidly advancing measurement techniques. This technique is capable of performing non-contact and non-destructive measurement and can be used not only to measure several quantities, such as temperature, pressure, refractive index, but also for investigation of inner structure of a broad range of technical materials. We present theoretical description of low-coherence interferometry and discuss its unique properties. We describe an OCT system developed in our Department for investigation of the structure of technical materials. In order to provide a better insight into the structure of investigated objects, our system was enhanced to include polarization state analysis capability. Measurement results of highly scattering materials e.g. PLZT ceramics and polymer composites are presented. Moreover, we present measurement setups for temperature, displacement and refractive index measurement using low coherence interferometry. Finally, some advanced detection setups, providing unique benefits, such as noise reduction or extended measurement range, are discussed.

Go to article

Authors and Affiliations

J. Pluciński
R. Hypszer
P. Wierzba
M. Strąkowski
M. Jędrzejewska-Szczerska
M. Maciejewski
B.B. Kosmowski
Download PDF Download RIS Download Bibtex

Abstract

Hydroxyapatite (HAp) has been attracting widespread interest in medical applications. In a form of coating, it enables to create a durable bond between an implant and surrounding bone tissues. With addition of silver nanoparticles HAp should also provide antibacterial activity. The aim of this research was to evaluate the composition of hydroxyapatite with silver nanoparticles in a non-destructive and non-contact way. For control measurements of HAp molecular composition and solvent evaporation efficiency the Raman spectroscopy has been chosen. In order to evaluate dispersion and concentration of the silver nanoparticles inside the hydroxyapatite matrix, the optical coherence tomography (OCT) has been used. Five samples were developed and examined ‒ a reference sample of pure HAp sol and four samples of HAp colloids with different silver nanoparticle solution volume ratios. The Raman spectra for each solution have been obtained and analyzed. Furthermore, a transverse-sectional visualization of every sample has been created and examined by means of OCT.

Go to article

Authors and Affiliations

Maciej J. Głowacki
Marcin Gnyba
Paulina Strąkowska
Mateusz Gardas
Maciej Kraszewski
Michał Trojanowski
Marcin R. Strąkowski
Download PDF Download RIS Download Bibtex

Abstract

This paper presents signal processing aspects for automatic segmentation of retinal layers of the human eye. The paper draws attention to the problems that occur during the computer image processing of images obtained with the use of the Spectral Domain Optical Coherence Tomography (SD OCT). Accuracy of the retinal layer segmentation for a set of typical 3D scans with a rather low quality was shown. Some possible ways to improve quality of the final results are pointed out. The experimental studies were performed using the so-called B-scans obtained with the OCT Copernicus HR device.

Go to article

Authors and Affiliations

Agnieszka Stankiewicz
Tomasz Marciniak
Adam Dąbrowski
Marcin Stopa
Piotr Rakowicz
Elżbieta Marciniak

This page uses 'cookies'. Learn more