Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In spite of the fact that in most applications, magnesium alloys are intended for operation in environments with room temperature, these

alloys are subject to elevated temperature and oxidizing atmosphere in various stages of preparation (casting, welding, thermal treatment).

At present, the studies focus on development of alloys with magnesium matrix, intended for plastic forming. The paper presents results of

studies on oxidation rate of WE43 and ZRE1 magnesium foundry alloys in dry and humidified atmosphere of N2+1%O2. Measurements of

the oxidation rate were carried out using a Setaram thermobalance in the temperature range of 350-480°C. Corrosion products were

analyzed by SEM-SEI, BSE and EDS. It was found that the oxide layer on the WE43 alloy has a very good resistance to oxidation. The

high protective properties of the layer should be attributed to the presence of yttrium in this alloy. On the other hand, a porous, two-layer

scale with a low adhesion to the substrate forms on the ZRE1 alloy. The increase in the sample mass in dry gas is lower than that in

humidified gas.

Go to article

Authors and Affiliations

R. Przeliorz
J. Piątkowski
Download PDF Download RIS Download Bibtex

Abstract

Ductile irons of the type of Si-Mo are characterized by increased resistance to long-term influence of high temperatures and cyclic temperature changes. They are mainly used in castings of combustion engine exhaust piping and other castings utilized at temperatures of up to 850°C. The aim of the study is to verify the mechanical properties of non-alloyed cast iron EN CSN GJS 450, SiMo4-0.5 and SiMo5-1 ductile irons at temperatures of 700 to 800°C, and the extent of their superficial oxidation after longterm annealing at a temperature of 900°C. Via chemical microanalysis the composition of oxidation products in the surface layer was evaluated.
Go to article

Authors and Affiliations

J. Roučka
E. Abramová
V. Kaňa
Download PDF Download RIS Download Bibtex

Abstract

On the basis of induction heating, radiation heating and liquid nitrogen refrigeration, high-temperature, medium-temperature, normal-temperature and low-temperature heating/refrigeration furnaces were designed, respectively. An apparatus with a wide temperature range and high accuracy applied to test oxidation resistance of materials has been developed based on the thermogravimetric method and the heat transfer principle. The apparatus consists of four heating/cooling systems, a specimen fixture positioning unit, a laser positioning unit, vertical and horizontal moving guide rails, and a high-precision weighing balance. The apparatus, based on the thermogravimetric method, is able to test oxidation resistance of materials. In the test, the temperature range was −180∼3000◦C (the highest temperature is determined by material properties). The temperature control accuracy was ±5◦C. The accuracy of on-line weighing was ±0:1 mg. The measurement uncertainty was 0.2 mg. Compared with other relevant devices, this apparatus has its own advantages: simple operation, wide heating/cooling temperature range, sufficient specimen heating, high sensitivity and precision, and short heating/cooling time. The experimental results show that the developed apparatus presented in this study not only can be used for isothermal thermogravimetric tests, but also for thermal cycling tests and multi-step oxidation tests. With the effective integration of multiple heating apparatus and refrigeration apparatus, the apparatus breaks through the limitations of the heating/cooling temperature range of the existing devices, accomplishes the high-precision oxidation resistance test of materials in a wide temperature range, and will play a great role in improving the research of materials.

Go to article

Authors and Affiliations

Dong-Yang An
Jing-Min Dai
Peng Xiao
Download PDF Download RIS Download Bibtex

Abstract

In this paper, thermal oxidation resistance of silicide-coated niobium substrates was tested in a temperature range of 1300–1450°C using an HVOF burner. Pure niobium specimens were coated using the pack cementation CVD method. Three different silicide thickness coatings were deposited. Thermal oxidation resistance of the coated niobium substrates was tested in a temperature range of 1300–1450°C using an HVOF burner. All samples that passed the test showed their ability to stabilize the temperature over a time of 30 s during the thermal test. The rise time of substrate temperature takes about 10 s, following which it keeps constant values. In order to assess the quality of the Nb-Si coatings before and after the thermal test, light microscopy, scanning electron microscopy (SEM) along with chemical analysis (EDS), X-ray diffraction XRD and Vickers hardness test investigation were performed. Results confirmed the presence of substrate Nb compounds as well as Si addition. The oxygen compounds are a result of high temperature intense oxidizing environment that causes the generation of SiO phase in the form of quartz and cristobalite during thermal testing. Except for one specimen, all substrate surfaces pass the high temperature oxidation test with no damages.
Go to article

Bibliography

  1.  S. Knittel, S. Mathieu, L. Portebois, S. Drawin, and M. Vilasi, “Development of silicide coatings to ensure the protection of Nb and silicide composites against high temperature oxidation”, Surf. Coat. Technol., 235, pp. 401‒406, 2013, doi: 10.1016/j.surfcoat.2013.07.053.
  2.  J. Cheng, S. Yi, and J. Park, “Oxidation behavior of Nb–Si–B alloys with the NbSi2 coating layer formed by a pack cementation technique”, Int. J. Refract. Met. Hard Mat., vol. 41, pp. 103‒109, 2013, doi: 10.1016/j.ijrmhm.2013.02.010.
  3.  S. Cheng, S. Yi, and J. Park, “Oxidation behaviors of Nb–Si–B ternary alloys at 1100°C under ambient atmosphere”, Intermetallics, vol. 23, pp. 12‒19, 2012, doi: 10.1016/j.intermet.2011.11.007.
  4.  B.P. Bewlay, M.R. Jackson, P.R. Subramanian, and J.C. Zhao, “A review of very-high-temperature Nb-silicide-based composites”, Metall. Mater. Trans. A, vol. 34, pp. 2043–2052, 2003, doi: 10.1007/s11661-003-0269-8.
  5.  R. Swadźba, “High temperature oxidation behavior of C103 alloy with boronized andsiliconized coatings during 1000h at 1100°C in air”, Surf. Coat. Technol., vol. 370, pp. 331‒339, 2019, doi: 10.1016/j.surfcoat.2019.04.019.
  6.  J. Sun, Q.G. Fu, L.P. Guo, and L. Wang, “Silicide coating fabricated by HAPC/SAPS combination to protect niobium alloy from oxidation”, ACS Appl. Mater. Interfaces, vol. 8, pp. 15838–15847, 2016, doi: 10.1021/acsami.6b04599.
  7.  J. Sun, T. Li, G.-P. Zhang, and Q.-G. Fu, “Different oxidation protection mechanisms of HAPC silicide coating on niobium alloy over a large temperature range”, Journal of Alloys and Compounds, vol. 790, pp. 1014‒1022, 2019, doi: 10.1016/j.jallcom.2019.03.229.
  8.  H.P. Martinz, B. Nigg, J. Matej, M. Sulik, H. Larcher, and A. Hoffmann, “Properties of the SIBOR® oxidation protective coating on refractory metal alloys”, Int. J. Refract. Met. Hard Mat., vol. 24, pp. 283‒291, 2006, doi: 10.1016/j.ijrmhm.2005.10.013.
  9.  K. Tatemoto, Y. Ono, and R.O. Suzuki, “Silicide coating on refractory metals in molten salt”, J. Phys. Chem. Solids, vol. 66, pp. 526‒529, 2005, doi: 10.1016/j.jpcs.2004.06.043.
  10.  B.V. Cockeram and R.A. Rapp, “Oxidation-resistant boron- and germanium-doped silicide coatings for refractory metals at high temperature”, Mater. Sci. Eng. A, vol. 192–193, part 2, pp. 980‒986, 1995, doi: 10.1016/0921-5093(95)03342-4.
  11.  L. Zheng, E. Liu, Z. Zheng, L. Ning, J. Tong, and Z. Tan, “Preparation of alumina/aluminide coatings on molybdenum metal substrates, and protection performance evaluation utilizing a DZ40M superalloy casting test”, Surf. Coat. Technol., vol. 395, p. 125931, 2020, doi: 10.1016/j.surfcoat.2020.125931.
  12.  M. Zielińska, M. Zagula-Yavorska, J. Sieniawski, and R. Filip, “Microstructure and oxidation resistance of an aluminide coating on the nickel based superalloymar m247 deposited by the cvd aluminizing process”, Arch. Metall. Mater., vol. 58, no. 3 pp. 697–701, 2013, doi: 10.2478/amm-2013-0057.
  13.  Y. Garip, “Production and microstructural characterization of nb-si based in-situ composite”, Bull. Pol. Acad. Sci. Arch. Metall. Mater., vol. 65, no. 2 pp. 917‒921, 2020, doi: 10.24425/amm.2020.132839.
  14.  M. Vilasi, G. Venturini, J. Steinmetz, and B. Malaman, “Crystal structure of triniobium triiron chromium hexasilicide Nb3Fe3 Cr1Si6: an intergrowth of Zr4Co4Ge7 and Nb2Cr4Si5 blocks”, J. Alloy. Compd., vol. 194, pp. 127‒132, 1993, doi: 10.1016/0925-8388(93)90657- 9.
  15.  M. Vilasi, M. Francois, R. Podor, and J. Steinmetz, “New silicides for new niobium protective coatings”, J. Alloy. Compd., vol. 264, pp. 244‒251, 1998, doi: 10.1016/S0925-8388(97)00234-X
  16.  M. Vilasi, M. Francois, H. Brequel, R. Podor, G. Venturini, and J. Steinmetz, “Phase equilibria in the Nb–Fe–Cr–Si System”, J. Alloy. Compd., vol. 269, pp. 187‒192, 1998, doi: 10.1016/S0925-8388(98)00142-X.
  17.  S. Knittel, S. Mathieu, and M. Vilasi, “Nb4Fe4Si7 coatings to protect niobium and niobium silicide composites against high temperature oxidation”, Surf. Coat. Technol., vol. 235, pp. 144–154, 2013, doi: 10.1016/j.surfcoat.2013.07.027.
  18.  S. Majumdar, T.P. Senguptab, G.B. Kaleb, and I.G. Sharma, “Development of multilayer oxidation resistant coatings on niobium and tantalum”, Surf. Coat. Technol., vol. 200, pp. 3713–3718, 2006, doi: 10.1016/j.surfcoat.2005.01.034.
  19.  S. Majumdar, A. Arya, I.G. Sharma, A.K. Suri, and S. Banerjee, “Deposition of aluminide and silicide based protective coatings on niobium”, App. Surf. Sci., vol. 257, pp. 635–640, 2010, doi: 10.1016/j.apsusc.2010.07.055.
  20.  L. Portebois, S. Mathieu, Y. Bouizi, M. Vilasi, and S. Mathieu, “Effect of boron addition on the oxidation resistance of silicide protective coatings: A focus on boron location in as-coated and oxidised coated niobium alloys”, Surf. Coat. Technol., vol. 253, pp. 292–299, 2014, doi: 10.1016/j.surfcoat.2014.05.058.
  21.  L. Xiao, X. Zhou, Y. Wang, R. Pu, G. Zhao, Z. Shen, and Y. Huang, S.Liu, Z.Cai, X.Zhao,, “Formation and oxidation behavior of Ce- modified MoSi2–NbSi2 coating on niobium alloy”, Corrosion Sci., vol. 173, p. 108751, 2020, doi: 10.1016/j.corsci.2020.108751.
  22.  J. Sun, Q. Fu, and L.Guo, “Influence of siliconizing on the oxidation behavior of plasma sprayed MoSi2 coating for niobium based alloy”, Intermetallics, vol. 72, pp. 9‒16, 2016, doi: 10.1016/j.intermet.2016.01.006.
  23.  M. Pons, M. Caillet, and A. Galerie, “High temperature oxidation of niobium superficially coated by laser treatment”, Mater. Chem. Phys., vol. 15, pp. 423‒432, 1987, doi: 10.1016/0254-0584(87)90062-9.
  24.  B.A. Pinto, A. Sofia, and C.M. D’Oliveira, “Nb silicide coatings processed by double pack cementation: Formation mechanisms and stability”, Surf. Coat. Technol. 409, 2021, doi: 10.1016/j.surfcoat.2021.126913.
  25.  R. Swadźba et al., “Characterization of Si-aluminide coating and oxide scale microstructure formed on γ-TiAl alloy during long-term oxidation at 950°C”, Intermetallics, vol. 87, pp. 81–89, 2017, doi: 10.1016/j.intermet.2017.04.015.
  26.  R. Swadźba, L. Swadźba, B. Mendala, P.-P. Bauer, N. Laska, and U. Schulz, “Microstructure and cyclic oxidation resistance of Si-aluminide coatings on γ-TiAl at 850°C”, Intermetallics, vol. 87, pp. 81‒89, 2017, doi: 10.1016/j.surfcoat.2020.126361.
  27.  J.A. Thornton, “High rate thick film growth”, Ann. Rev. Mater. Sci., vol. 7, pp. 239‒246, 1977, doi: 10.1146/annurev.ms.07.080177.001323.
Go to article

Authors and Affiliations

Radosław Szklarek
1 2 3
Tomasz Tański
1
ORCID: ORCID
Bogusław Mendala
1
Marcin Staszuk
1
ORCID: ORCID
Łukasz Krzemiński
1
Paweł Nuckowski
1
Kamil Sobczak
3

  1. Silesian University of Technology, ul. Akademicka 2A, 44-100 Gliwice, Poland
  2. Spinex Spinkiewicz Company, Klimontowska 19, 04-672 Warsaw, Poland
  3. Łukasiewicz Research Network – Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland

This page uses 'cookies'. Learn more