Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The prediction of strength properties is a topic of interest in many engineering fields. The common tests used to evaluate rock strength include the uniaxial compressive strength test ( UCS), Brazilian tensile strength ( BTS) and flexural strength ( FS). These tests can only be carried out in the laboratory and involve some difficulties such as preparation of the samples according to standards, amount of samples, and the long duration of test phases. This article aims to suggest equations for the prediction of mechanical properties of aggregates as a function of the P-wave velocity ( Vp) and Schmidt hammer hardness ( SHH) value of intact or in-situ rocks using regression analyses. Within the scope of the study, 90 samples were collected in the south of Türkiye. The mechanical properties, such as uniaxial compressive strength, Brazilian tensile strength and flexural strength of specimens, were determined in the laboratory and investigated in relation to P-wave velocity, and Schmidt hardness. Using regression techniques, various models were developed, and comparisons were made to find the optimum models using a coefficient of determination (R2) and p value (sig) performance indexes. Simple and multiple regression analysis found powerful correlations between mechanical properties and P-wave velocity and Schmidt hammer hardness. In addition, the prediction equations were compared with previous studies. The results obtained from this study indicate that the results of simple test methods, such as Vp or SHH values, of rock used for aggregate could be used to predict some mechanical properties. Thus, it will be possible to obtain information about the mechanical properties of aggregates in the study area in a faster and more practical way by using predictive models.
Go to article

Authors and Affiliations

Esma Kahraman
1
ORCID: ORCID

  1. Çukurova University, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Evaluating soil strength by geophysical methods using P-waves was undertaken in this study to assess the effects of changed binder ratios on stabilization and compression characteristics. The materials included dredged sediments collected in the seabed of Timrå region, north Sweden. The Portland cement (Basement CEM II/A-V, SS EN 197-1) and ground granulated blast furnace slag (GGBFS) were used as stabilizers. The experiments were performed on behalf of the Svenska Cellulosa Aktiebolaget (SCA) Biorefinery Östrand AB pulp mill. Quantity of binder included 150, 120 and 100 kg. The properties of soil were evaluated after 28, 42, 43, 70, 71 and 85 days of curing using applied geophysical methods of measuring the travel time of primary wave propagation. The P-waves were determined to evaluate the strength of stabilized soils. The results demonstrated variation of P-waves velocity depending on stabilizing agent and curing time in various ratios: Low water/High binder (LW/HB), High water/Low binder (HW/LB) and percentage of agents (CEM II/A-V/GGBFS) as 30%/70%, 50%/50% and 70%/30%. The compression characteristics of soils were assessed using uniaxial compressive strength (UCS). The P-wave velocities were higher for samples stabilized with LW/HB compared to those with HW/LB. The primary wave propagation increased over curing time for all stabilized mixes along with the increased UCS, which proves a tight correlation with the increased strength of soil solidified by the agents. Increased water ratio gives a lower strength by maintained amount of binder and vice versa.

Go to article

Authors and Affiliations

Per Lindh
1 2
ORCID: ORCID
Polina Lemenkova
3
ORCID: ORCID

  1. Swedish Transport Administration, Gibraltargatan 7, Malmö, Sweden
  2. Lund University, Division of Building Materials, Box 118, SE- 221-00, Lund, Sweden
  3. Université Libre de Bruxelles (ULB), École polytechnique de Bruxelles (Brussels Faculty of Engineering), Laboratory of Image Synthesis and Analysis (LISA). Campus de Solbosch - CP 165/57, Avenue Franklin D. Roosevelt 50, B-1050 Brussels, Belgium
Download PDF Download RIS Download Bibtex

Abstract

The knowledge of the dynamic elastic properties of a coal seam is important in the context of various types of calculations of the seam behavior under various stress-strain conditions. These properties are often used in numerical and analytical modeling related to maintaining the stability of excavations and the analysis of mechanisms, e.g. related to the risk of rock bursts. Additionally, during the implementation of seismic surveys, e.g. seismic profiling and seismic tomography in coal seams, the reference values of the elastic properties of coal are used in the calculation of relative stresses in various geological and mining conditions.
The study aims to calculate the dynamic elastic parameters of the coal seam located at a depth of 1,260 m in one of the hard coal mines in the Upper Silesian Coal Basin (USCB). Basic measurements of the velocity of P- and S-waves were conducted using the seismic profiling method. These surveys are unique due to the lack of the velocity wave values in the coal seam at such a great depth in the USBC and difficult measurement conditions in a coal mine. As a result, dynamic modulus of elasticity was calculated, such as Young’s modulus, volumetric strain modulus, shear modulus and Poisson’s ratio. The volumetric density of coal used for calculations was determined on the basis of laboratory tests on samples taken in the area of the study. The research results showed that the calculated mean P-wave velocity of 2,356 m/s for the depth of 1,260 m is approximately consistent with the empirical relationship obtained by an earlier study. The P-wave velocity can be taken as the reference velocity at a depth of approx. 1,260 m in the calculation of the seismic anomaly in the seismic profiling method.
Go to article

Bibliography

Brown, E.T. and Hoek, E. 1978. Trends in relationships between measured in-situ stresses and depth. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 15(4), pp. 211–215.

Chlebowski, D. and Burtan, Z. 2021. Geophysical and analytical determination of overstressed zones in exploited coal seam: A case study. Acta Geophys. 69, pp. 701–710. DOI: 10.1007/s11600-021-00547-z.

Czarny et al. 2016 – Czarny, R., Marcak, H., Nakata, N., Pilecki, Z. and Isakow, Z. 2016. Monitoring velocity changes caused by underground coal mining using seismic noise. Pure. Appl. Geophys. 173, pp. 1907–1916. DOI: 10.1007/s00024-015-1234-3.

Dubiński, J. 1989. Seismic method of shock hazard assessment in hard coal mines (Sejsmiczna metoda wyprzedzającej oceny zagrożenia wstrząsami górniczymi w kopalniach węgla kamiennego). Prace Głównego Instytutu Górnictwa. Katowice: Central Mining Institute, 163 pp. (in Polish).

Dubiński, J. and Konopko, W. 2000. Rock bursts – assessment, prognosis, defeating (Tąpania – ocena, prognoza, zwalczanie). Katowice: Central Mining Institute, 378 pp. (in Polish).

Dubiński et al. 2001 – Dubiński, J., Pilecki, Z. and Zuberek, W. 2001. Geophysical research in mines – past, present and future plans (Badania geofizyczne w kopalniach – przeszłość, teraźniejszość, i zamierzenia na przyszłość). Kraków: MEERI PAS (in Polish).

Gustkiewicz, J. ed. 1999. Physical properties of Carboniferous rocks of the Upper Silesian coal basin. Rocks of Saddle beds (Właściwości fizyczne wybranych skał karbońskich Górnośląskiego Zagłębia Węglowego – skały warstw siodłowych). Kraków: MEERI PAS, 267 pp. (in Polish).

ISO 349:2020 Hard coal – Audibert-Arnu dilatometer test.

Jarzyna et al. 2020 – Jarzyna, J., Niculescu, B., M., Malinowski, M. and Pilecki Z. 2020. Editorial for special issue advances in engineering, environmental and mining geophysics. Acta Geophys. 69(2), pp. 609–611. DOI: 10.1007/s11600-021-00560-2.

Kokowski et al. 2019 – Kokowski, J., Szreder, Z. and Pilecka, E. 2019. Reference P-wave velocity in coal seams at great depths in Jastrzebie coal mine. E3S Web of Conf. 133, 01011. DOI: 10.1051/e3sconf/201913301011.

Kudyk, M. and Pilecki Z. 2009. Modulus of deformation of Carpathian flysch on the route of the “Emilia” tunnel in the Zywiec Beskids (Modul deformacji utworow fliszu karpackiego na trasie tunelu „Emilia” w Beskidzie Zywieckim). Zeszyty Naukowe IGSMiE PAN 76, pp. 45–64 (in Polish).

Ladanyi, B. 1974. Use of the long-term strength concept in the determination of ground pressure on tunnel linings. Proceedings of the Third Congress of the Int. Soc. for Rock Mech., Denver, vol. II part B, pp. 1150–1156.

Majcherczyk, T. and Małkowski, P. 2002. Relation between carbon rock depth and behavior of rock mass around openings (Głębokość zalegania skał karbońskich a zachowanie się górotworu wokół wyrobiska korytarzowego). Proceedings of the Conference of Winter School of Rock Mass Mechanics (XXV Zimowa Szkoła Mechaniki Górotworu). Zakopane, 18–22 March, 2002, pp. 427–435 (in Polish).

Majcherczyk et al. 2012 – Majcherczyk, T., Pilecki, Z., Niedbalski, Z., Pilecka, E., Blajer, M. and Pszonka, J. 2012. Impact of geological, engineering and geotechnical conditions on the selection of parameters of the initial support of the road tunnel in Laliki (Wpływ warunków geologiczno-inżynierskich i geotechnicznych na dobór parametrów obudowy wstępnej tunelu drogowego w Lalikach). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 28(1), pp. 103–124 (in Polish).

Małkowski et al. 2021 – Małkowski, P., Niedbalski, Z. and Balarabe, T. 2021. A statistical analysis of geomechanical data and its effect on rock mass numerical modeling: a case study. Int. J Coal Sci. Technol. 8(2), pp. 312–323.

Marcak, H. and Pilecki, Z. 2019. Assessment of the subsidence ratio be based on seismic noise measurements in mining terrain. Arch. Min. Sci. 64, pp. 197–212, DOI: 10.24425/ams.2019.126280.

Olechowski et al. 2018 – Olechowski, S., Krawiec, K., Kokowski, J., Szreder, Z., Harba, P. and Ćwiękała, M. 2018. Comparison of the results of the seismic profiling and WAS-96/RMS seismoacoustic active method in an assessment of the impact of the overlying coal seam edge. E3S Web of Conf. 66, 01011. DOI: 10.1051/e3sconf/20186601011.

PN-G-97002:2018-11 Węgiel kamienny – Klasyfikacja – Typy.

Pilecki, Z. 1995. An Example of Rock Burst Hazard State Control Using a Z onal Seismoacoustic Observation. Proc. Fifth Conf. on Acoustic Emission/Microseismic Activity, Clausthal-Zellerfeld: Trans. Tech. Publications, pp. 313–332.

Pilecki, Z. 1999. Dynamic analysis of mining tremor impact on excavation. [In:] Detournay, C. and Hart, R. eds. Proc. Int. FLAC Symp. on Numerical Modeling in Geomechanics. Minneapolis, Minnesota, USA: 1–3 September, 1999. Rotterdam: A. A. Balkema, pp. 397–400.

Pilecki, Z. 2018. Seismic method in geoengineering (Metoda sejsmiczna w geoinżynierii). Kraków: MEERI PAS, 311 pp. (in Polish).

Szreder et al. 2008 – Szreder, Z., Pilecki, Z. and Kłosiński, J. 2008. Effectiveness of recognition of exploitation edge influence with the help of profiling of attenuation and velocity of seismic wave (Efektywność rozpoznania oddziaływania krawędzi eksploatacyjnych metodami profilowania tłumienia oraz prędkości fali sejsmicznej). Gospodarka Surowcami Mineralnymi – Mineral Resources Management 24(2), pp. 215–226 (in Polish).

Szreder, Z. and Barnaś, M. 2017. Assessment of the impact of an overlying coal seam edge using seismic profiling of refracted P-wave velocity. E3S Web of Conf. 24, 01007 DOI: 10.1051/e3sconf/20172401007.

Ślizowski et al. 2013 – Ślizowski, J., Pilecki, Z., Urbańczyk, K., Pilecka, E., Lankof, L. and Czarny, R. 2013. Site assessment for astroparticle detector location in evaporites of the Polkowice-Sieroszowice copper ore mine, Poland. Adv. High Energy Phys. 12, pp. DOI: 10.1155/2013/461764.

Wojtecki et al. 2016 – Wojtecki, Ł., Dzik, G. and Mirek, A. 2016. Changes of te dynamic elastic modules of the coal seam ahead the longwall face (Zmiany dynamicznych modułów sprężystości pokładu węgla przed frontem ściany). Przegląd Górniczy 72(1), pp. 57–62 (in Polish).
Go to article

Authors and Affiliations

Krzysztof Krawiec
1
ORCID: ORCID

  1. Mineral and Energy Economy Research Institute, Polish Academy of Sciences, Kraków, Poland

This page uses 'cookies'. Learn more