Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The welding of nuclear grade P91 and P92 steel plate of thickness 5.2 mm were performed using the autogenous tungsten

inert gas (TIG) welding process. The welded joint of P91 and P92 steel plate were subjected to the varying post weld heat-treatment

(PWHT) including the post weld heat treatment (PWHT) and re-austenitizing based tempering (PWNT). A comparative study was

performed related to the microstructure evolution in fusion zone (FZ) of both the welded joint using the scanning electron microscope

and optical microscope in a different condition of heat treatment. The hardness test of the FZ for both joints was also conducted in

a different condition of heat treatment. P92 steel welded joint have observed the higher tendency of the δ ferrite formation that led

to the great variation in hardness of the P92 FZ. The homogeneous microstructure (absence of δ ferrite) and acceptable hardness

was observed after the PWNT treatment for both the welded joint.

Go to article

Authors and Affiliations

C. Pandey
M. Mohan Mahapatra
P. Kumar
P. Prakesh Kumar
J.G. Thakare
Download PDF Download RIS Download Bibtex

Abstract

In present work, two nuclear grade steel (P91, P92) are joined using the arc welding process. The welded joints were subjected to the heat treatment in order to restore the mechanical properties and overcome the heterogeneity across the joints. The weldments were studied for microstructure evolution and mechanical behavior under different condition of heat treatment. The variation in mechanical behavior obtained for the welded joints were tried to relate the microstructural evolution. After the normalizing based heat treatment, homogeneity with negligible δ ferrite across the welded joints was observed.

Go to article

Authors and Affiliations

Sachin Sirohi
Chandan Pandey
Amit Goyal

This page uses 'cookies'. Learn more