Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents simulation and experimental results obtained with a Dead-Beat predictive current controller for a Permanent Magnet Synchronous Machine (PMSM) drive system. With means of combined field and circuit simulations, an efficiency map and required current in a direct- and quadrature-axis are defined. A control algorithm was implemented within an open-interface inverter from Texas Instruments. Dynamic response for both axis currents was defined and verified as well as current ripples for different set currents in the quadrature axis.
Go to article

Authors and Affiliations

Ryszard Pałka
Rafał Piotuch
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a position sensorless drive of non salient pole PM synchronous motors for all speeds including zero speed. Using adaptive Lyapunov design a new approach for the design of an observer is developed. The resulting scheme leads to a nonlinear full order observer for the motor states including the rotor speed. Assuming motor parameters known the design achieves stability with guaranteed region of attraction even at zero speed. The control method is made robust at zero and low speed by changing the direct vector current component to a value different from zero. In order to verify the applicability of the method the controller has been implemented and tested on a 800 W motor.

Go to article

Authors and Affiliations

H. Rasmussen
Download PDF Download RIS Download Bibtex

Abstract

The development of electric vehicles (EV) necessitates the search for new solutions for configuring powertrain systems to increase reliability and efficiency. The modularity of power supplies, converters, and electrical machines is one such solution. Among modular electric machines, dual three-phase (DTP) motors are the most common in high-power drives. To simplify low and medium power drives for EVs based on DTP PM motor, it is proposed to use a BLDC drive and machine of the simplest design – with concentrated windings and surface mounted PMs on the rotor. To study and create such drives, an improved mathematical model of DTP PM machine was developed in this work. It is based on the results of 2D FEM modeling of the magnetic field. According to the developed method, the dependences of the self and mutual inductances between all phase windings from the angle of rotor position and loads of different motor modulus were determined. Based on these inductances, the circuit computer model of DTP PM machine was created in the Matlab/Simulink. It has a high simulation speed and a high level of adequacy, which is confirmed by experimental studies with a mock-up sample of the electric drive system.
Go to article

Authors and Affiliations

Ihor Shchur
1
Damian Mazur
2
ORCID: ORCID
Olekcandr Makarchuk
1 3
Ihor Bilyakovskyy
1
Valentyn Turkovskyi
1
Bogdan Kwiatkowski
4
ORCID: ORCID
Dawid Kalandyk
5

  1. Department of Electric Mechatronics and Computer-Controlled Electromechanical Systems, Lviv Polytechnic National University, Lviv 79013, Ukraine
  2. Department of Electrical Engineering and Fundamentals of Computer Science, Rzeszow University of Technology, Rzeszow 35-959, Poland
  3. Faculty of Electrical Engineering, Czestochowa University of Technology, Czestochowa 42-200, Poland
  4. Department of Electrical Engineering and Fundamentals of ComputerScience, Rzeszow University of Technology, Rzeszow 35-959, Poland
  5. Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, Rzeszów 35-959, Poland

This page uses 'cookies'. Learn more