Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 10
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The objective of the research in this work was the modification of structure of carbide-type chromized layers, by the combination of diffusion chromizing with subsequent PVD treatment, consisting of chromium nitride deposition, carried out to improve their tribological properties. As a result, hybrid layers on the surface of tool steel were obtained. For comparison, the properties of single chromized carbide layers obtained in a diffusion chromizing process were tested. Investigations of layer microstructure, their mechanical properties, surface topography, adhesion of layers to the steel substrate, as well as tribological properties were conducted. The layer microstructure was characterized by X-ray diffraction and scanning electron microscopy. Topography of the layer surface was studied by an optical profilometer. The scratch test for investigations of layers adhesion to the steel substrate was used. Testing of tribological properties (linear wear) of the layers was performed by the three-cylinder-cone method. It was shown, that hybrid layers are characterized by a significantly smaller surface roughness than that of chromized carbide layers and their wear resistance improved almost twice with respect to carbide layers.

Go to article

Authors and Affiliations

E. Kasprzycka
B. Bogdański
Download PDF Download RIS Download Bibtex

Abstract

The paper discusses the results of investigations of material, tribological and anti-corrosion properties of hybrid coatings of the Cr/CrN type, consisting of chromium and chromium nitride, formed on the surface of alloy tool steel by the Arc-PVD method. Investigations of the morphology and microstructure of hybrid coatings, as well as of their phase composition were carried out. The studies on mechanical properties included tests on hardness and Young’s modulus using the nanoindentation method. Tests on adhesion were conducted using the scratch-test method. Tribological properties of the obtained coatings were evaluated by the pin-on-disc method. Resistance to corrosion was determined by electrochemical methods. It was shown that hybrid coatings of the Cr/CrN type are characterized by good adhesion to the substrate and very good tribological properties, as well as by very good resistance to corrosion in a solution containing chlorine ions.

Go to article

Authors and Affiliations

E. Kasprzycka
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the study of microstructure and properties of 8 mol% yttrium stabilized zirconia coating fabricated by Plasma Spray Physical Vapor Deposition technique on commercial pure titanium. The coating was characterized by X-ray diffraction, high resolution scanning electron microscope, profilometer, nanoindentation and nanomachining tests. The X-ray phase analysis exhibit the tetragonal Zr0.935Y0.065O1.968, TiO and α-Ti phases. The Rietveld refinement technique were indicated the changes of crystal structure of the produced coatings. The characteristic structure of columns were observed in High Resolutions Scanning Electron Microscopy. Moreover, the obtained coating had various development of surfaces, thickness was equal to 3.1(1) µm and roughness 0.40(7) µm. Furthermore, the production coatings did not show microcracks, delamination and crumbing. The performed experiment encourages carried out us to tests for osseointegration.

Go to article

Authors and Affiliations

J. Barczyk
G. Dercz
I. Matuła
M. Góral
J. Maszybrocka
D. Bochenek
W. Gurdziel
Download PDF Download RIS Download Bibtex

Abstract

A short literature survey which justifies coating of ceramic cutting inserts is presented. The results reported are on selected nitride

coatings, in particular nanoscale multilayer, with layers of type Ti-Zr-N, TiN, ZrN and (TiAl)N, deposited by the arc PVD method on oxidecarbide ceramic cutting inserts of type TACN and TW2 produced at the Institute of Advanced Manufacturing Technology. Measurements and quality assessments were made, including of thickness of the coatings and of their constituent micro and nanolayers, microhardness of the coating and of the substrate, surface roughness of the inserts and of the cylindrical workpieces turned with these tools. Lifetimes of the coated and uncoated inserts were compared in turning an alloy tool steel. A significant increase in lifetime of the coated TW2 cutting tools was shown.

Go to article

Authors and Affiliations

K. Czechowski
I. Pofelska-Filip
B. Królicka
P. Szlosek
B. Smuk
J. Wszołek
A. Kurleto
J. Kasina
Download PDF Download RIS Download Bibtex

Abstract

The tribological behavior of the PVD-TiAlN coated carbide inserts in dry sliding against two-phase (α-β) titanium alloy,Ti6Al4V grade, was investigated. A modified pin-on-disc device was used to conduct experiments under variable normal load and sliding speed. Scanning electron microscopy (SEM) and X-ray micro-analyses by EDS were applied for observations of wear scars and wear products. It was revealed that the increase of sliding speed contributes to decreasing the friction coefficient under a low normal force, whereas the increase of the normal loading causes the friction coefficient is less sensitive to changes in the sliding speed and its values are equal to μ = 0.26-0.34. The adhesive nature of wear along with severe abrasive action of the Ti alloy were documented.

Go to article

Authors and Affiliations

Wit Grzesik
Joanna Małecka
Zbigniew Zalisz
Krzysztof Żak
Piotr Niesłony
Download PDF Download RIS Download Bibtex

Abstract

Magnesium alloys have recently become increasingly popular in many sectors of the industry due to their unique properties, such as low density, high specific strength, vibration damping ability along with their recyclability and excellent machinability. Nowadays, thin films have been attracting more attention in applications that improve mechanical and corrosion properties. The following alloys were used for the coated Mg-Al-RE and the ultra-light magnesium-lithium alloy of the Mg-Li-Al-RE type. A single layer of TiO2 was deposited using the atomic layer deposition ALD method. Multiple layers of the Ti/TiO₂ and Ti/TiO₂/Ti/TiO₂ type were obtained by the MS-PVD magnetron sputtering technique. Samples were investigated by scanning and a transmission electron microscope (SEM, TEM) and their morphology was studied by an atomic forces microscope (AFM). Further examinations, including electrochemical corrosion, roughness and tribology, were also carried out. As a result of the research, it was found that the best electrochemical properties are exhibited by single TiO2 layers obtained by the ALD method. Moreover, it was found that the Ti/TiO₂/Ti/TiO₂ double film has better properties than the Ti/TiO₂ film.
Go to article

Bibliography

  1.  K.-J. Huang, L. Yan, C.-S. Wang, C.-S. Xie, and C.-R. Zhou, “Wear and corrosion properties of laser cladded Cu47Ti34Zr11Ni8/SiC amorphous composite coatings on AZ91D magnesium alloy”, Trans. Nonferrous Met. Soc. China, vol. 20, no. 7, pp. 1351‒1355, 2010, doi: 10.1016/S1003-6326(09)60303-4.
  2.  J. Song, J. She, D. Chen, and F. Pan, “Latest research advances on magnesium and magnesium alloys worldwide”, J. Magnes. Alloy., vol. 8, no. 1, pp. 1‒41, 2020, doi: 10.1016/j.jma.2020.02.003.
  3.  M. Król, P. Snopiński, M. Pagáč, J. Hajnyš, and J. Petrů, “Hot Deformation Treatment of Grain-Modified Mg-Li Alloy”, Materials, vol. 13, pp. 4557‒4570, 2020, doi: 10.3390/ma13204557.
  4.  M. Król, “Magnesium–lithium alloys with TiB and Sr additions”, J. Therm. Anal. Calorim., vol 138, pp. 4237‒4245, 2019, doi: 10.1007/ s10973-019-08341-2.
  5.  F. Liu, Z. Sun, and Y. Ji, “Corrosion resistance and tribological behavior of particles reinforced AZ31 magnesium matrix composites developed by friction stir processing” J. Mater. Res. Technol-JMRT, vol. 11, pp. 1019‒1030, 2021, doi: 10.1016/j.jmrt.2021.01.071.
  6.  H. Yu, W. Li, Y. Tan, and Y. Tan, “The Effect of Annealing on the Microstructure and Properties of Ultralow-Temperature Rolled Mg– 2Y–0.6Nd–0.6Zr Alloy”, Metals, vol. 11, no 2, pp. 315‒331, 2021, doi: 10.3390/met11020315.
  7.  K. Cesarz-Andraczke and A. Kazek-Kęsik, “PEO layers on Mg-based metallic glass to control hydrogen evolution rate”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 68, no. 1, pp119‒124, 2020, doi: 10.24425/bpasts.2020.131841.
  8.  L. Zhu and G. Song, “Improved corrosion resistance of AZ91D magnesium alloy by an aluminum-alloyed coating” Surf. Coat. Technol., vol. 200, No. 8, pp. 2834‒2840, 2006.
  9.  J.D. Majumdar, R. Galun, B.L. Mordike, and I. Manna, “Effect of laser surface melting on corrosion and wear resistance of a commercial magnesium alloy”, Mater. Sci. Eng. A, vol. 361, no.  1‒2, pp. 119‒129, 2003.
  10.  A. Woźniak, W. Walke, A. Jakóbik-Kolon, B. Ziębowicz, Z. Brytan, and M. Adamiak “The Influence of ZnO Oxide Layer on the Physicochemical Behavior of Ti6Al4V Titanium Alloy” Materials, vol. 14, p. 230, 2021, doi: 10.3390/ma14010230.
  11.  F. Vargas, H. Ageorges, P. Fournier, P. Fauchais, and M.E. López, “Mechanical and tribological performance of Al2O3-TiO2 coatings elaborated by flame and plasma spraying”, Surf. Coat. Technol., vol. 205, pp. 1132‒1136, 2010, doi: 10.1016/j.surfcoat.2010.07.061.
  12.  H. Hu, X. Nie, and Y. Ma, “Corrosion and Surface Treatment of Magnesium Alloys”, in Magnesium alloys properties in solid and liquid states, vol. 3, pp. 67‒108, 2013, doi: 10.1155/2013/532896.
  13.  K.J. Singh, M. Sahni, and M. Rajoriya, “Study of Structural, Optical and Semiconducting Properties of TiO2 Thin Film deposited by RF Magnetron Sputtering”, Mater. Today: Proc., vol.  12, no. 3, pp. 565‒572, 2019.
  14.  T. Tański, W. Matysiak, D. Kosmalska, and A. Lubos “Influence of calcination temperature on optical and structural properties of TiO2 thin films prepared by means of sol-gel and spin coating”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 66, no. 2, pp. 151‒156, 2018, doi: 10.24425/119069.
  15.  Y. Zhao, Z. Zhang, L. Shi, F. Zhang, S. Li, and R. Zeng, “Corrosion resistance of a self-healing multilayer film based on SiO2 and CeO2 nanoparticles layer-by-layer assembly on Mg alloys”, Mater. Lett., vol. 237, pp. 14‒18, 2019.
  16.  K. Trembecka-Wojciga, R. Major, J.M. Lackner, F. Bruckert, E. Jasek, and B. Major, “Biomechanical properties of the thin PVD coatings defined by red blood cells”, Bull. Pol. Acad. Sci. Tech. Sci., vol. 63, no. 3, pp. 697‒705, 2015, doi: 10.1515/bpasts-2015-0081.
  17.  A. Kania, W. Pilarczyk, and M.M. Szindler, “Structure and corrosion behavior of TiO2 thin films deposited onto Mg-based alloy using magnetron sputtering and sol-gel”, Thin Solid Films, vol. 701, pp. 252‒259, 2020, doi: 10.1016/j.tsf.2020.137945.
  18.  P. Pansila, N. Witit-anunb, and S. Chaiyakun, “Influence of sputtering power on structure and photocatalyst properties of DC magnetron sputtered TiO2 thin film”, Procedia Eng., vol. 32, pp. 862‒867, 2012.
  19.  M. Basiaga, W. Walke, M. Staszuk, W. Kajzer, A. Kajzer, and K. Nowińska, “Influence of ALD process parameters on the physical and chemical properties of the surface of vascular stents”, Arch. Civ. Mech. Eng., vol. 17, pp. 32‒42, 2017, doi: 10.1016/j.acme.2016.08.001.
  20.  L. Velardi, L. Scrimieri, L. Maruccio, V. Nassisi, A. Serra, D Manno, L. Calcagnile, and G. Quarta, “Synthesis and doping of TiO2 thin films via a new type of laser plasma source”, Vacuum, vol. 184, p. 109890, 2021, doi: 10.1016/j.vacuum.2020.109890.
  21.  A. Kozlovskiy, I. Shlimas, K. Dukenbayevc, and M. Zdorovets, “Structure and corrosion properties of thin TiO2 films obtained by magnetron sputtering”, Vacuum, vol.  164, pp. 224‒232, 2019, doi: 10.1016/j.vacuum.2019.03.026.
  22.  M. Esmaily et al., “Fundamentals and advances in magnesium alloy corrosion”, Prog. Mater. Sci., vol. 89, pp. 92‒193, 2017, doi: 10.1016/j. pmatsci.2017.04.011.
  23.  W. Zhang, W. Liu, B. Li, and G. Mai, “Characterization and Tribological Investigation of Sol-Gel Titania and Doped Titania Thin Films”, J. Am. Ceram. Soc., vol. 85, no. 7, pp.  1770‒1776, 2002, doi: 10.1111/j.1151-2916.2002.tb00351.x.
Go to article

Authors and Affiliations

Marcin Staszuk
1
ORCID: ORCID
Łukasz Reimann
1
Aleksandra Ściślak
1
Justyna Jaworska
1
Mirosława Pawlyta
1
Tomasz Mikuszewski
2
Dariusz Kuc
2
Tomasz Tański
1
ORCID: ORCID
Antonín Kříž
3

  1. Silesian University of Technology, Faculty of Mechanical Engineering, ul. Konarskiego 18a, 44-100 Gliwice, Poland
  2. Silesian University of Technology, Faculty of Materials Engineering and Metallurgy, ul. Krasińskiego 8, Katowice, Poland
  3. University of West Bohemia, Faculty of Mechanical Engineering, Univerzitni 22 St., 30614 Plzen, Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

Already published data for the optical band gap (Eg) of thin films and nanostructured copper zinc tin sulphide (CZTS) have been reviewed and combined. The vacuum (physical) and non-vacuum (chemical) processes are focused in the study for band gap comparison. The results are accumulated for thin films and nanostructured in different tables. It is inferred from the re- view that the nanostructured material has plenty of worth by engineering the band gap for capturing the maximum photons from solar spectrum.

Go to article

Authors and Affiliations

N. Ali
R. Ahmed
A. Bakhtiar-Ul-Haq Shaari
Download PDF Download RIS Download Bibtex

Abstract

The article describes a new test method to quickly evaluate the durability of a protective coating to dynamic contact with liquid metal. The essence of the method is the movement of a drop of liquid metal inside a rotating ring, covered from the inside with the protective coating under test. The parameters determined in the test are analogous to the classic pin-on-disk tribological test. The method was tested for the system: liquid alloy 2017A vs. AlTiN coating on a copper substrate. The test temperature was 750°C, and exposure times ranged from 30 to 90 minutes. Sliding path equivalent for the metal droplet/coating system ranged from 31.6 to 95 m. The study, which included visual evaluation of the surface of the samples, followed by phase and microstructural analysis, showed the high efficiency of the method for assessing the lifetime of protective coatings on contact with liquid metal. The investigated issue was also analyzed from the model side taking into account changes in the diffusion coefficient at the contact of liquid metal with the substrate, occurring with the progressive degradation of the protective coating.
Go to article

Bibliography

[1] Buyanovskii, I.A. (1994). Tribological test methods and apparatus. Chemistry Technology Fuels Oils. 30, 133-147. https://doi.org/10.1007/BF00723941.
[2] Torbacke, M., Kassman, Å. & Kassfeldt, E. (2014). Tribological Test Methods. In Lubricants: Introduction to Properties and Performance (pp. 113-132). John Wiley & Sons Ltd. https://doi.org/10.1002/9781118799734.
[3] Jakubéczyová, D., Hagarová, M., Hvizdoš, P., Cervová, J. & Frenák, M. (2015). Tribological tests of modern coatings. International Journal of Electrochemical Science. 10(9), 7803-7810.
[4] Hagarová1, M., Savková, J. & Jakubéczyová, D. (2008). Structure and tribological properties of thin TiAlN coating, Journal of Metals, Materials and Minerals. 18(2), 25-31.
[5] Rui Wang, Hai-Juan Mei, Ren-Suo Li, Quan Zhang, Teng-Fei Zhang, Qi-Min Wang, (2018). Friction and wear behavior of AlTiN-coated carbide balls against SKD11 hardened steel at elevated temperatures. Acta Metallurgica Sinica (English Letters). 31, 1073-1083. https://doi.org/10.1007/s40195-018-0753-1.
[6] Eustathopoulos, N. (2015). Wetting by liquid metals application in materials processing: The contribution of the Grenoble group. Metals. 5(1), 350-370. https://doi.org/10.3390/met5010350.
[7] Asthana, R. & Sobczak, N. (2014). Wettability in joining of advanced ceramics and composites: issues and challenges. Ceramics Transactions. 248, 589-600.
[8] Sobczak, N., Singh, M. & Asthana, R. (2005). High-temperature wettability measurements in metal/ceramic systems – some methodological issues. Current Opinion in Solid State and Materials Science. 9(4-5), 241-253. DOI:10.1016/j.cossms.2006.07.007.
[9] Eustathopoulos, N., Sobczak, N., Passerone A. & Nogi, K. (2005). Measurement of contact angle and work of adhesion at high temperature. Journal of Materials Science. 40, 2271-2280. https://doi.org/10.1007/s10853-005-1945-4.
[10] Sobczak, N., Nowak, R., Radziwill, W., Budzioch, J. & Glenz, A. (2008). Experimental complex for investigations of high temperature capillarity phenomena. Materials Science and Engineering A. 495(1-2), 43-49. https://doi.org/10.1016/j.msea.2007.11.094.
[11] Hotlos, A., Boczkal, G., Nawrocki, J. & Ziewiec, K. (2019). Microstructure of the oxide ceramics/Inconel 713C interface. Materials Science and Technology (United Kingdom). 35(4), 456-461. https://doi.org/10.1080/02670836.2019.1570440.
[12] Sułkowski, B., Boczkal, G., Pałka, P. & Mrówka-Nowotnik, G. (2021) Effect of graphite microstructure on their physical parameters and wettability properties. Refractories and Industrial Ceramics. 62(4), 458-462. https://doi.org/10.1007/s11148-021-00624-2.
[13] Liu Jian, Wang Wei, Yan Wei, Shi Quan Qiang, Yang Zhenguo, Dan Yiyin, Yang Ke. Rotatory experimental apparatus of liquid metal high temperature corrosion, Pat. CN204758460.
[14] Wang Pei, Ye Zhongfei, Dong Hong, Li Dianzhong, Li Yiyi, Rotary type dynamic metal corrosion device, Pat. CN203405397.
[15] Góral, M., Mrówka-Nowotnik, G. (2020). Protective coatings for aluminium die casting moulds and continuous casting moulds: A review Ochrona Przed Korozja. 63(7), 216–219. https://doi.org/10.15199/40.2020.7.1.
[16] Boczkal. G., Patent Application P.435041, A method and device for testing durability of protective coatings in contact with liquid metal, 2020-08-21.
[17] Wriedt, H.A., Murray, J.L. (1986). Binary Alloy Phase Diagrams, 3, (Ed. T. B. Massalski),ASM, Metals Park, OH 32705.
[18] PalDey, S. & Deevi, S.C. (2003). Single layer and multilayer wear resistant coatings of (Ti,Al)N: a review. Materials Science and Engineering: A. 342(1-2), 58-79. https://doi.org/10.1016/S0921-5093(02)00259-9.
[19] Mrówka-Nowotnik, G., Gancarczyk, K., Nowotnik, A., Dychtoń, K. & Boczkal, G. (2021). Microstructure and properties of as-cast and heat-treated 2017a aluminium alloy obtained from scrap recycling. Materials. 14(1),89, 1-25. https://doi.org/10.3390/ma14010089.
[20] Ullner, C., Beckmann, J. & Morrell, R. (2002). Instrumented indentation test for advanced technical ceramics. Journal of the European Ceramic Society. 22(8), 1183-1189. https://doi.org/10.1016/S0955-2219(01)00433-2.
[21] Okane, T., Senderowski, C., Zasada, D., Kania, B., Janczak-Rusch, J. & Wolczynski, W. (2011). Thermodynamic justification for the Ni/Al/Ni joint formation by a diffusion brazing. International Journal of Thermodynamics. 14(3), 97-105. https://doi.org /10.5541/ijot.296.
[22] Paul, A., Laurila, T., Vuorinen, V., Divinski, S. (2014). Fick’s Laws of Diffusion. In Thermodynamics, Diffusion and the Kirkendall Effect in Solids (pp. 115-139). Springer, Cham. https://doi.org/10.1007/978-3-319-07461-0_3.
[23] Perek-Nowak, M. & Boczkal, G. (2016). Formation of transition phases on interface between monocrystalline Fe and Cu due to mutual solid-state diffusion. Archives of Metallurgy and Materials. 61(2A), 581-585. DOI:10.1515/amm-2016-0099.

Go to article

Authors and Affiliations

Paweł Pałka
1
ORCID: ORCID
Grzegorz Boczkal
1
ORCID: ORCID
Agnieszka Hotloś
1
ORCID: ORCID
Grażyna Mrówka-Nowotnik
2
ORCID: ORCID

  1. AGH University of Krakow, Faculty of Non-Ferrous Metals Al. Mickiewicza 30, 30-059 Kraków, Poland
  2. Rzeszów University of Technology, Department of Material Science Al. Powstańców Warszawy 12, 35-959 Rzeszów, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper addresses an important scientific topic from the utilitarian point of view concerning the surface treatment of Al-Si-Cu aluminum alloys by PVD/ALD hybrid coating deposition. The influence of the conditions of deposition of titanium oxide in CrN/TiO2 coatings on their structure and properties, in particular corrosion resistance, were investigated. The TiO2 layer was produced by the atomic layer deposition (ALD) method with a variable number of cycles. Structural investigations were performed using scanning and transmission electron microscopy (SEM and TEM), atomic force microscopy (AFM), and Raman spectroscopy methods. Electrochemical properties were analyzed using potentiodynamic and electrochemical impedance spectroscopy (EIS) methods. The CrN/TiO2 hybrid coating with titanium oxide deposited at 500 ALD cycles showed the best corrosion properties. It was also found that the prerequisite for obtaining the best electrochemical properties was the amorphous structure of titanium oxide in the tested hybrid coatings. The high tribological properties of the tested coatings were also confirmed.
Go to article

Authors and Affiliations

Marcin Staszuk
1
ORCID: ORCID

  1. Silesian University of Technology, Faculty of Mechanical Engineering, Konarskiego 18a St., 44-100 Gliwice, Poland
Download PDF Download RIS Download Bibtex

Abstract

We investigated the influence of steel surface properties on the wettability of zinc (Zn). Our main objective is to address the selective oxidation of solute alloying elements and enhance the wetting behavior of Zn on advanced high strength steel (AHSS) by employing an aluminum (Al) interlayer through the physical vapor deposition technique. The deposition of an Al interlayer resulted in a decrease in contact angle and an increase in spread width as the molten Zn interacted with the Al interlay on the steel substrate. Importantly, the incorporation of an Al interlayer demonstrated a significant improvement in wettability by substantially increasing the work of adhesion compared to the uncoated AHSS substrate.
Go to article

Authors and Affiliations

Srinivasulu Grandhi
1
Kwang-Hyeok Jin
1
Min-Su Kim
ORCID: ORCID
Dong-Joo Yoon
2
Seung-Hyo Lee
3
Min-Suk Oh
4
ORCID: ORCID

  1. Jeonbuk National University, Division of Advanced Materials Engineering and Research Center for Advanced Materials Developm ent, Jeonju,Republic of Korea
  2. Sunchon National University, Center for Practical Use of Rare Materials, Sunchon, Republic of Korea
  3. Korea Maritime & Ocean University, Department of Ocean Advanced of Materials Convergence Engineering, Pusan, Republic of Korea
  4. Jeonbuk National University, Division of Advanced Materials Engineering and Research Center for Advanced Materials Developm ent, Jeonju, Republic of Korea

This page uses 'cookies'. Learn more