Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Starting from a subjective viewpoint on the decreasing interest in invertebrate fossil taxonomy, this essay discusses its importance in palaeobiological studies exemplified with cases from the palaeobiogeography and palaeoecology of rugose corals, and aims at provoking a discussion on the topic. The possible causes of this negative declining trend include inherent problems of palaeontological taxonomy, and changing systems in science and higher education.
Go to article

Bibliography


Arrigoni, R., Berumen, M.L., Chen, C.A., Terraneo, T.I., Baird, A.H., Payri, C. and Benzoni, F. 2016. Species delimitation in the reef coral genera Echinophyllia and Oxypora (Scleractinia, Lobophylliidae) with a description of two new species. Molecular Phylogenetics and Evolution, 105, 146–159.
Baird, A.H., Hoogenboom, M.O. and Huang, D. 2017. Cyphastrea salae, a new species of hard coral from Lord Howe Island, Australia (Scleractinia, Merulinidae). ZooKeys, 662, 49–66.
Bamber, E.W., Rodríguez, S., Richards, B.C. and Mamet, B. 2017. Uppermost Viséan and Serpukhovian (Mississippian) rugose corals and biostratigraphy. Canadian Cordillera. Palaeontographica Canadiana, 36, 1–169.
Berkowski, B. and Zapalski, M.K. 2018. Large dwellers of the Silurian Halysites biostrome: rhizosessile life strategies of cystiphyllid rugose corals from the Llandovery of Gotland. Lethaia, 51, 581–595.
Billings, E. 1858. Report for the year 1857. Report of Progress, 147–192. Geological Survey of Canada; Montreal.
Cowman, P.F., Quattrini, A.M., Bridge, T.C.L., Watkins-Colwell, G.J., Fadli, N., Grinblat, M., Roberts, T.E., McFadden, C.S., Miller, D.J. and Baird, A.H. 2020. An enhanced target-enrichment bait set for Hexacorallia provides phylogenomic resolution of the staghorn corals (Acroporidae) and close relatives. Molecular Phylogenetics and Evolution, 153, 106944.
Dana, J.D. 1846–1849. Zoophytes. United States Exploring Expedition during the years 1838–1842, 7, 740 pp. Lea and Blanchard; Philadelphia.
Fedorowski, J. 1980. Some aspects of coloniality in corals. Acta Palaeontologica Polonica, 25, 429–437.
Fedorowski, J. 1986. The rugose coral faunas of the Carboniferous/ Permian boundary interval. Acta Palaeontologica Polonica, 31, 394–402.
Fedorowski, J. 1997. Diachronism in the development and extinction of Permian Rugosa. Geologos, 2, 59–164.
Fedorowski, J. 2019. Bashkirian Rugosa (Anthozoa) from the Donets Basin (Ukraine). Part 7. The Family Neokoninckophyllidae Fomichev, 1953, with a preliminary revision of Moscovian taxa. Acta Geologica Polonica, 69, 59–81.
Fedorowski, J. and Bamber, E.W. 2007. Remarks on lithostrotionid phylogeny in western North America and western Europe. In: Hubman, B. and Piller, W.E. (Eds), Fossil corals and sponges. Proceedings of the 9th International Symposium on Fossil Cnidaria and Porifera, Graz, 2003. Österreichische Akademie der Wissenschaften. Schriftenreihe der Erdwissenschaftlichen Kommissionen, 17, 251–273.
Fedorowski, J., Bamber, E.W. and Richards, B.C. 2019. Bashkirian rugose corals from the Carboniferous Mattson Formation in the Liard Basin, northwest Canada – stratigraphic and paleobiogeographic implications. Acta Palaeontologica Polonica, 64, 851–870.
Fedorowski, J., Bamber, E.W. and Stevens, C.H. 2007. Lower Permian colonial rugose corals, Western and Northwestern Pangaea: Taxonomy and distribution, 231 pp. National Research Council of Canada Research Press; Ottawa.
Garcia-Bellido, D.C. and Rodríguez, S. 2005. Palaeobiogeographical relationships of poriferan and coral assemblages during the late Carboniferous and the closure of the western Palaeotethys Sea-Panthalassan Ocean connection. Palaeogeography, Palaeoclimatology, Palaeoecology, 219, 321– 331.
Gómez-Herguedas, A. and Rodríguez, S. 2009. Paleoenvironmental analysis based on rugose corals and microfacies: a case study at La Cornuda section (Early Serpukhovian, Guadiato Area, SW Spain). Lethaia, 42, 39–54.
Groot, G. de 1963. Carboniferous corals of northern Palencia (Spain). Leidse Geologische Mededelingen, 29, 1–124.
Hill, D. 1981. Coelenterata, Supplement 1, Rugosa and Tabulata. In: Teichert, C. (Ed.), Treatise on Invertebrate Paleontology, Part F, 762 pp. Geological Society of America and University of Kansas Press; Lawrence.
Humboldt, A. v. and Bonpland, A. 1805–1829. Voyage aux régions équinoxiales du Nouveau Continent, fait de 1799 à 1804. Maze; Paris.
Kelly, W.A. 1942. Lithostrotionidae in the Rocky Mountains. Journal of Paleontology, 16, 351–361.
Kitahara, M.V., Capel, K.C.C. and Migotto, A.E. 2020. Coenocyathus sebroecki sp. nov.: a new azooxanthellate coral (Scleractinia, Caryophylliidae) from southeastern Brazil. Marine Biodiversity, 50 (4), 1–9.
Kitahara, M.V., Fukami, H., Benzoni, F. and Huang, D. 2016. The new systematics of Scleractinia: integrating molecular and morphological evidence. In: Goffredo, S. and Dubinsky, Z. (Eds), The Cnidaria, past, present and future: The world of Medusa and her sisters, 41–59. Springer; Cham.
Lamarck, J.-B. M. de. 1816. Histoire naturelle des animaux sans vertèbres. Tome second, 568 pp. Verdière; Paris.
Linnæus, C. 1766–1767. Systema naturae per regna tria naturae: secundum classes, ordines, genera, species, cum characteribus, differentiis, synonymis, locis. Ed. 12. 1, Regnum Animale, 1 and 2, pp. 1–532 [1766], pp. 533–1327 [1767]. Laurentii Salvii; Holmiae.
Lonsdale, W. 1845. Description of some characteristic Palaeozoic corals from Russia, Vol. 1. In: Murchison, R.I., Verneuil, E. de and Keyserling, A. v. (Eds), The Geology of Russia in Europe and the Ural Mountains, 591–634. Murray; London.
McCoy, F. 1849. On some new genera and species of Carboniferous corals and Foraminifera. Annals and Magazine of Natural History, Series 2, 3, 1–20.
Milne Edwards, H. and Haime, J. 1848. Mémoire 2. Monographie des turbinolides. Annales des Sciences Naturelles, Zoologie, Series 3, 9, 211–344.
Milne Edwards, H. and Haime, J. 1851. A monograph of British fossil corals, 322 pp. Palaeontographical Society of London; London.
Minato, M. and Kato, M. 1965a. Waagenophyllidae. Journal of the Faculty of Sciences, Hokkaido University. Series 4. Geology and Mineralogy, 12, 1–241.
Minato, M. and Kato, M. 1965b. Durhaminidae. Journal of the Faculty of Sciences, Hokkaido University. Series 4. Geology and Mineralogy, 13, 13–86.
Oliver, W.A. Jr. 1976. Presidential address. Biogeography of Devonian rugose corals. Journal of Paleontology, 50, 365–373.
Oliver, W.A. Jr. and Pedder, A.E.H. 1979. Biogeography of Late Silurian and Devonian rugose corals in North America. In: Gray, J. and Boucot, A.J. (Eds), Historical biogeography, plate tectonics and changing environment, 131–145. Oregon State University Press; Cornvallis.
Orbigny, A. d’ 1852. Cours élémentaire de paleontology et géologie stratigraphique. Vol. 2, 1146 pp. Victor Masson; Paris.
Paz-García, D.A., Hellberg, M.E., García-de-León, F.J. and Balart, E.F. 2015. Switch between morphospecies of Pocillopora corals. The American Naturalist, 186 (3), 434–440.
Rodríguez, S. 1984. Corales rugosos del este des Asturias. Unpublished Ph.D. thesis, 528 pp. Departamento de Paleontologia, Facultad de Ciencias Geológicas, Universidad Complutense de Madrid.
Rodríguez, S. and Kullmann, J. 1999. Rugose corals from the upper member of the Picos de Europa Formation (Moscovian, Cantabrian Mountains, NW Spain). Palaeontographica, Abteilung A, 252, 23–92.
Said, I., Rodríguez, S., Somerville, I.D. and Cózar, P. 2011. Environmental study of coral assemblages from the Upper Viséan Tizra Formation (Adarough Area, Morocco): implication for Western Palaeotethys biogeography. Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen, 260, 101–118.
Saville Kent, W. 1871. On some new and little-known species of madrepores, or stony corals, in the British Museum collection. Proceedings of the Scientific Meetings of the Zoological Society of London, 1871, 275–286.
Scotese, C.R. 2001. Atlas of Earth History. Vol. 1. Paleogeography, 52 pp. PALEOMAP Project; Arlington.
Sorauf, J.E. and Kissling, D.L. 2012. Rugosans immured in Silurian Paleofavosites; Brassfield Formation (Llandovery) of Ohio. Geologica Belgica, 5, 220–225.
Torsvik, T.H. and Cocks, L.R.M. 2017. Earth History and Palaeogeography, 317 pp. Cambridge University Press; Cambridge.
Vinn, O. and Mõtus, M.A. 2014. Endobiotic rugosan symbionts in stromatoporoids from Sheinwoodian (Silurian) of Baltica. Plos One, 9, 1–6.
Wang, H.C. 1950. A revision of the Zoantharia Rugosa in the light of their minute skeletal structures. Philosophical Transactions of the Royal Society of London. Series B Biological Sciences, 611, 175–264.
Wedekind, R. 1927. Die Zoantharia Rugosa von Gotland (bes. Nordgotland), Nebst Bemerkungen zur Biostratigraphie des Gotlandium. Sveriges Geologiska Undersökning, 19, 1–94.
Wu, W.S. and Zhou, K.J. 1982. Upper Carboniferous corals from Kalping and Aksu, Xinjiang. Academia Sinica. Nanjing Institute of Geology and Palaeontology, Bulletin, 1982, 213– 239. [In Chinese with English summary]
Ziegler, P.A. 1988. Laurussia – the old red continent. In: Mc- Millan, N.J., Embry, A.F. and Glass, D.J. (Eds), Devonian of the World. 1. Regional synthesis. Proceedings of the Second International Symposium on the Devonian System, 5–48. Canadian Society of Petroleum Geologists; Calgary.
Go to article

Authors and Affiliations

Jerzy Fedorowski
1

  1. Institute of Geology, Adam Mickiewicz University, Bogumiła Krygowskiego 12, 61-680 Poznań, Poland

Authors and Affiliations

Marc Philippe
1
ORCID: ORCID

  1. Univ Lyon, UniversitéClaude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, F-69622, Villeurbanne, France
Download PDF Download RIS Download Bibtex

Abstract

Palynological investigation of the Vrabchov dol locality (Western Bulgaria) which recently yielded fragmentary dinosaur bones attributed to the clade Titanosauria, reveals well-preserved sporomorph assemblages dominated by angiosperm pollen from the Normapolles group, spores and rare gymnosperms. The age assessment of the studied sequence is based on the diagnostic Normapolles species, such as Oculopollis orbicularis Góczán, 1964, Oculopollis zaklinskaiae Góczán, 1964, Krutzschipollis spatiosus Góczán in Góczán et al., 1967 and Krutzschipollis crassus (Góczán, 1964) Góczán in Góczán et al., 1967. The concurrent presence of these pollen species suggests a late Santonian–early Campanian age for the succession. The sporomorph association is encountered in a palynofacies dominated by continental elements, including translucent phytoclasts (tissues, wood remains and plant cuticles). The sedimentary succession shows no evidence of marine elements and a very low proportion of AOM that attests to deposition within a lagoonal to foreshore marine environment, with high continental input and short transportation. The vegetation in the studied area was primarily composed of a range of Normapolles-producing angiosperms and secondarily of pteridophyte spore-producing plants. Gymnosperms were rare. Such a vegetation pattern reflects a warm, seasonally dry climate during the late Santonian–earliest Campanian in the studied area. The dinosaurs inhabited a wet lowland area, probably rich in herbaceous plants.

Go to article

Authors and Affiliations

Polina Pavlishina
Doche Dochev
Vladimir Nikolov
Marlena Yaneva
Ralitsa Konyovska
Download PDF Download RIS Download Bibtex

Abstract

Upper Turonian to lower Coniacian marls of the Strehlen Formation of the Graupa 60/1 core were investigated for their foraminiferal content to add stratigraphical and palaeoenvironmental information about the transitional facies zone of the Saxonian Cretaceous Basin. Further comparison with foraminiferal faunas of the Brausnitzbach Marl (Schrammstein Formation) were carried out to clarify its relationship to the marls of the Graupa 60/1 core. Tethyan agglutinated marker species for the late Turonian to early Coniacian confirm the proposed age of the marls of the Graupa 60/1 core and the Brausnitzbach Marl. The palaeoenvironment of the marls reflects middle to outer shelf conditions. The maximum flooding zones of genetic sequences TUR6, TUR7 and CON1 could be linked to acmes of foraminiferal species and foraminiferal morphogroups. In general, a rise of the relative sea-level can be recognised from the base to the top of the marls of the Graupa 60/1 core. While agglutinated foraminiferal assemblages suggest a generally high organic matter influx and variable but high productivity in the Graupa 60/1 core, the Brausnitzbach Marl deposition was characterized by moderate productivity and a generally shallower water depth.
Go to article

Authors and Affiliations

Richard M. Besen
1
Mareike Achilles
2
Mauro Alivernini
2
Thomas Voigt
2
Peter Frenzel
2
Ulrich Struck
3 4

  1. Freie Universität Berlin, Institut für Geologische Wissenschaften, Malteserstraße 74-100, 12249 Berlin, Germany
  2. Friedrich Schiller University of Jena, Institute of Earth Sciences, Burgweg 11, 07749 Jena, Germany
  3. Freie Universität Berlin, Institut für Geologische Wissenschaften, Malteserstraße 74-100, 12249 Berlin
  4. Museum für Naturkunde Berlin, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Invalidenstrasse 43, 10115 Berlin, Germany
Download PDF Download RIS Download Bibtex

Abstract

Multi-proxy palaeoenvironmental analyses on the two loess-palaeosol sequences of Šarengrad II and Zmajevac (Croatia) provided the opportunity to obtain various data on climatic and environmental events that occurred in the southern part of the Carpathian Basin during the past 350,000 years. Palaeoecological horizons were reconstructed using sedimentological data (organic matter and carbonate content, grain-size distribution and magnetic susceptibility) and the dominance-based malacological results (MZs) supported by habitat and richness charts, moreover multi-variate statistics (cluster analysis). The correlation of the reconstructed palaeoecological horizons with global climatic trends (Marine Isotope Stages) determined the main accumulation processes in the examined areas. The palaeoecological analyses revealed specific accumulation conditions at both sequences, fluvial and aeolian environments at Šarengrad and a possible forest refuge at Zmajevac.
Go to article

Bibliography

1. Alexandrowicz, W.P., Dmytruk, R., 2007. Molluscs in Eemian–Vistulian deposits of the Kolodiiv section, Ukraine (East Carpathian Foreland) and their palaeoecological interpretation. Geological Quaterly 51/2, 173–178.
2. An, Z., Kukla, G.J., Porter, S.C., Xiao, J., 1991. Magnetic susceptibility evidence of monsoon variation on the Loess Plateau of central China during the last 130,000 years. Quaternary Research 36, 29–36.
3. Antoine, P., Rousseau, D.D., Zöller, L., Lang, A., Munaut, A.V., Hatté, C., Fontugne, M., 2001. High-resolution record of the last Interglacial-glacial cycle in the Nussloch loess palaeosol sequences, Upper Rhine Area, Germany. Quaternary International 76–77, 211–229.
4. Banak, A., Pavelić, D., Kovačić, M., Mandic, O., 2013. Sedimentary characteristics and source of loess in Baranja (Eastern Croatia). Aeolian Research 11, 129–139.
5. Björck, S., Walker, M.J.C., Cwynar, L.C., Johnsen, S., Knudsen, K.L., Lowe, J.J., Wohlfarth, B., and intimate members, 1998. An event stratigraphy for the Last Termination in the North Atlantic region based on the Greenland ice-core record: A proposal by the INTIMATE group. Journal of Quaternary Science 13, 283–292.
6. Bond, G.C., Broecker, W.S., Johnsen S., McManus, J.F., Labeyrie, L., Jouzel, J., Bonani, G., 1993. Correlation between climate records from North Atlantic sediments and Greenland ice. Nature 365, 143–147.
7. Clark, P.U., Dyke, A.S., Sakhun, J.D., Carlson, A.E., Clark, J., Wolfharth, B., Mitrovica, J.X., Hostetler, S.W., McCabe, A.M., 2009. The Last Glacial Maximum. Science 325, 710–714.
8. Dean, W.E., 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. Journal of Sedimentary Petrology 44, 242–248.
9. Dearing, J.A., Hay, K.L., Baban, S.M., Huddleston, A.S., Wellington, E.M., Loveland, P., 1996. Magnetic susceptibility of soil: an evaluation of conflicting theories using a national data set. Geophysical Journal International 127, 728–734.
10. Ding, Z.L., Sun, J.M., Yang, S.L., Liu, T.S., 2001. Geochemistry of the Pliocene red clay formation in the Chinese Loess Plateau and implications for its origin, source provenance and palaeoclimate change. Acta Geochimica et Cosmochimica 65, 901–913.
11. Dowdeswell, J.A., 1982. Relative dating of late Quaternary deposits using cluster and discriminant analysis, Audubon Cirque, Mt. Audubon, Colorado Front Range. Boreas 11, 151–161.
12. Galović, L., 2014. Geochemical archive in the three loess/palaeosol sections in the Eastern Croatia: Zmajevac I, Zmajevac and Erdut. Aeolian Research 15, 113–132.
13. Galović, L., 2016. Sedimentological and mineralogical characteristics of the Pleistocene loess/palaeosol sections in Eastern Croatia. Aeolian Research 20, 7–23.
14. Galović, L., Peh, Z., 2016. Mineralogical discrimination of the pleistocene loess/palaeosol sections in Srijem and Baranja, Croatia. Aeolian Research 21, 151–162.
15. Galović, L., Frechen, M., Halamić, J., Durn, G., Romić, M., 2009. Loess chronostratigraphy in Eastern Croatia – A luminescence dating approach. Quaternary International 198, 85–97.
16. Galović, L., Frechen, M., Peh, Z., Durn, G., Halamić, J., 2011. Loess/ palaeosol section in Šarengrad, Croatia – A qualitative discussion on the correlation of the geochemical and magnetic susceptibility data. Quaternary International 240/1–2, 22–34.
17. Hammer, Ø., Harper, D.A.T., Ryan, P.D., 2001. PAST: Palaeontological statistics software package for education and data analysis. Palaeontologia Electrica 4(1), 9 pp.
18. Heiri, O., Lotter, A., Lemcke, G., 2001. Loss on ignition as a method for estimating organic and carbonate content insediments: reproducibility and comparability of results. Journal of Palaeolimnology 25, 101–110.
19. Hemming, S.R., 2004. Heinrich events: massive Late Pleistocene detritus layers of the North Atlantic and their global climate imprint. Review of Geophysics 42, RG1005, 1–43.
20. Hupuczi, J., 2012. Egy egyedülálló dél-alföldi löszszelvény malakológiai vizsgálata és a terület felső-würm palaeoklimatológiai rekonstrukciója. PhD thesis, University of Szeged, p. 119 (in Hungarian)
21. Hupuczi, J., Molnár, D., Sümegi, P., 2010. Preliminary malacological investigation of the loess profile at Šarengrad, Croatia. Central European Journal of Geosciences 2, 57–63.
22. Keller, E.A., Swanson, F.J., 1979. Effects of large organic material on channel form and fluvial processes. Earth Surface Processes and Landforms 4(4), 361–380.
23. Konert, M., Vandenberghe, J., 1997. Comparison of layer grain size analysis with pipette and sieve analysis: a solution for the underestimation of the clay fraction. Sedimentology 44, 523–535.
24. Krolopp, E., 1983. A magyarországi pleisztocén képződmények malakológiai tagolása. CSc thesis, Magyar Állami Földtani Intézet, Budapest, p. 160. (in Hungarian)
25. Krolopp, E., Sümegi, P., 1992. A magyarországi löszök képződésének palaeoökológiai rekonstrukciója Mollusca fauna alapján. In: Szöőr, Gy. (Ed.), Fáciesanalitikai, palaeobiogeokémiai és palaeoökológiai kutatások. MTA Debreceni Akadémiai Bizottság, Debrecen, 247–263. (in Hungarian)
26. Krolopp, E., Sümegi, P., 1995. Palaeoecological reconstruction of the Late Pleistocene based on loess malacofauna on Hungary. Geo-Journal 36, 213–222.
27. Lisiecki, L.E., Raymo, M.E., 2005. A Plio-Pleistocene stack of 57 globally distributed benthic δ18O Records. Palaeoceanography 20, PA1003, 1–17.
28. Ložek, V., 1964. Quartarmollusken der Tschechoslowakei. Rozpravy Ústredniho ústavu geologického, Praha, 31, pp. 374. (in German)
29. Moine, O, Rousseau, D.D, Antione, P., 2005. Terrestrial molluscan records of Weichselian Lower to Middle Pleniglacial climatic changes from the Nussloch loess series (Rhine Valley, Germany): the impact of local factors. Boreas 34/3, 363–380.
30. Molnár, D., 2015. Dél-dunántúli és kelet-horvátországi lösz-palaeotalaj szelvények palaeoökológiai rekonstrukciója malakológiai és üledéktani adatok segítségével. PhD thesis, Szeged, Hungary, p. 125. (in Hungarian)
31. Molnár, D., Hupuczi, J., Galović, L., Sümegi, P., 2010. Preliminary malacological investigation on the loess profile at Zmajevac, Croatia. Central European Journal of Geosciences 2/1, 52–56.
32. Molnár, D., Sümegi, P., Fekete, I., Makó, L., Sümegi, B.P., 2019. Radiocarbon dated malacological records of two Late Pleistocene loess-palaeosol sequences from SW Hungary: Palaeoecological inferences. Quaternary International 504, 108–117.
33. Nugteren, G., Vandenberghe, J., van Huissteden, J., An, Z.S., 2004. A Quaternary climate record based on grain size analysis from the Luochuan loess section on the Central Loess Plateau, China. Global and Planeary. Change 41, 167–183.
34. Passega, R., Byramjee, R., 1969. Grain-size image of clastic deposits. Sedimentology 13(3–4), 233–252.
35. Pécsi, M., 1990. Loess is not just the accumulation of dust. Quaternary International 7–8, 1–21.
36. Podani, J., 1978. Néhány klasszifikációs és ordinációs eljárás alkal mazása a malakofaunisztikai és cönológiai adatok feldolgozásában I. Állattani Közlemények 65, 103–113. (in Hungarian)
37. Podani, J., 1979. Néhány klasszifikációs és ordinációs eljárás alkalmazása a malakofaunisztikai és cönológiai adatok feldolgozásában II. Állattani Közlemények 66, 85–97. (in Hungarian)
38. Pye, K., 1995. The nature, origin and accumulation of loess. Quaternary Science Reviews 14, 653–667.
39. Rousseau, D.D., 1990a. Biogeography of the Pleistocene pleniglacial malacofaunas in Europe. Stratigraphic and climatic implications. Palaeogeography, Palaeoclimatology, Palaeoecology 80, 7–23.
40. Rousseau, D.D., 1990b. Statistical analyses of loess molluscs for palaeoecological reconstructions. Quaternary International 7, 81–89.
41. Rousseau, D.D., 1991. Climatic transfer function from Quaternary molluscs in European loess deposits. Quaternary Research 36, 195–209.
42. Rousseau, D.D., Kukla, G., 1994. Late Pleistocene climate record in the Eustis loess section, Nebraska, based on land snail assemblages and magnetic susceptibility. Quaternary Research 42, 176–187.
43. Rousseau, D.D., Puisségur, J.J., 1999. Climatic interpretation of terrestrial malacofaunas of the last interglacial in southeastern France. Palaeogeography, Palaeoclimatology, Palaeoecology 151/4, 321–336.
44. Rousseau, D.D., Antione, P., Hatté, C., Lang, A., Zöller, L., Fontugne, M., Ben Othman, D., Luck, J.M., Moine, O., Labonne, M., Bentaleb, I., Jolly, D., 2002. Abrupt millennial climatic changes from Nussloch (Germany) Upper Weichselian eolian records during the last glaciation. Quaternary Science Revivews 21, 1577–1582.
45. Rousseau, D.D., Sima, A., Antione, P., Hatté, C., Lang, A., Zöller, L., 2007. Link between European and North-Atlantic abrupt climate changes over the last glaciation. Geophysical Research Letters 34 (L22713), 1029/2007/GL031716.
46. Ruszkiczai-Rüdiger, Zs., Csillag, G., Fodor, L., Braucher, R., Novothny, Á., Thamó-Bozsó, E., Virág, A., Pazonyi, P., Timár, G., 2018. Integration of new and revised chronological data to constrain the terrace evolution of the Danube River (Gerecse Hills, Pannonian Basin). Quaternary Geochronology 48, 148–170.
47. Ruszkiczay-Rüdiger, Zs., Balázs, A., Csillag, G., Drijkoningen, G., Fodor, L., 2020. Uplift of the Transdanubian Range, Pannonian Basin: How fast and why? Global and Planetary Change 192, 103263.
48. Southwood, T.R.E., Henderson, P.A., 2000. Ecological methods. Blackwell Science Ltd, Oxford, England, 575 pp.
49. Sümegi, P., 1989. A Hajdúság felső-pleisztocén fejlődéstörténete finomrétegtani (üledékföldtani, őslénytani, geokémiai) vizsgálatok alapján. PhD thesis, Kossuth Lajos Tudományegyetem, Debrecen, 96 pp. (in Hungarian)
50. Sümegi, P., 1995. Quartermalacological analysis of Late-Pleistocene loess sediments of the Great Hungarian Plain. In: Fűköh L. (ed.), Quaternary Malacostratigraphy in Hungary. Malacological Newsletter Suppl. 1, 79–111.
51. Sümegi, P., 1996. Az ÉK-magyarországi löszterületek összehasonlító őskörnyezeti rekonstrukciója és rétegtani értékelése. CSc thesis, Kossuth Lajos Tudományegyetem, Debrecen, p. 120. (in Hungarian)
52. Sümegi, P., 2001. A negyedidőszak földtanának és őskörnyezettanának alapjai. JATEPress, Szeged, 262 pp. (in Hungarian)
53. Sümegi, P., 2005. Loess and Upper Palaeolithic environment in Hungary. Aurea Kiadó, Nagykovácsi, 312 pp.
54. Sümegi, P., Krolopp, E., 1995. A magyarországi würm korú löszök képződésének palaeoökológiai rekonstrukciója Mollusca-fauna alapján. Földtani Közlöny 125, 125–148. (in Hungarian)
55. Sümegi, P., Hertelendi, E., 1998. Reconstruction of microenvironmental changes in Kopasz Hill loess area at Tokaj (Hungary) between 15000–70000 BP years. Radiocarbon 40, 855–863.
56. Sümegi, P., Krolopp, E., 2002. Quartermalacological analyses for modelling of the Upper Weichselian palaeoenvironmental changes in the Carpathian Basin. Quaternary International 91, 53–63.
57. Sümegi, P., Persaits, G,. Gulyás, S., 2012. Woodland-Grassland Ecotonal Shifts in Environmental Mosaics: Lessons Learnt from the Environmental History of the Carpathian Basin (Central Europe) During the Holocene and the Last Ice Age Based on Investigation of Palaeobotanical and Mollusk Remains. In: Myster, R.W. (Ed.), Ecotones Between Forest and Grassland. Springer Press, New York, 17–57.
58. Sümegi, P., Gulyás, S., Csökmei, B., Molnár, D., Hammbach, U., Marković, S., Stevens, T., 2013. Climatic fluctuations inferred for the Middle and Late Pleniglacial (MIS2) based on high-resolution (~ca.20 y) preliminary environmental magnetic investigation from the loess profile of Madaras brickyard (Hungary). Central European Geology 55, 329–345.
59. Sümegi, P., Náfrádi, K., Molnár, D., Sávai, Sz., 2015. Results of palaeoecological studies in the loess region of Szeged-Öthalom (SE Hungary). Quaternary International 357, 1–13.
60. Sümegi, P., Marković, S.B., Molnár, D., Sávai, S., Szelepcsényi, Z., Novák, Z., 2016. Črvenka loess-palaeosol sequence revisited: local and regional Quaternary biogeographical inferences of the southern Carpathian Basin. Open Geosciences 8, 309–404.
61. Sümegi, P., Gulyás, S., Molnár, D., Sümegi, B.P., Almond, P.C., Vandenberghe, J., Zhou, L.P., Pál-Molnár, E., Törőcsik, T., Hao, Q., Smalley, I., Molnár, M., Marsi, I., 2018. New chronology of the best developed loess/paleosol sequence of Hungary capturing the past 1.1 ma: Implications for correlation and proposed pan-Eurasian stratigraphic schemes. Quaternary Science Reviews 191, 144–166.
62. Sümegi, P., Molnár, D., Gulyás, S., Náfrádi, K. Sümegi, B.P., Törőcsik, T., Persaits, G., Molnár, M., Vandenberghe, J., Zhou, L.P., 2019. High-resolution proxy record of the environmental response to climatic variations during transition MIS3/MIS2 and MIS2 in Central Europe: the loess-palaeosol sequence of Katymár brickyard (Hungary). Quaternary International 504, 40–55.
63. Sümegi, P., Gulyás, S., Molnár, D., Szilágyi, G., Sümegi, B.P., Törőcsik, T., Molnár, M., 2020. 14C dated chronology of the thickest and best resolved loess/palaeosol record of the LGM from SE Hungary based on comparing precision and accuracy of age-depth models. Radiocarbon 62/2, 403–417.
64. Sun, J., Liu, T., 2000 Multiple origins and interpretations of the magnetic susceptibility signal in Chinese wind-blown sediments. Earth and Planetary Science Letters 180, 287–296. 65. Timár, G., 2003. Controls on channel sinuosity changes: a case study of the Tisza River, the Great Hungarian Plain. Quaternary Science Reviews 22, 2199–2207.
66. Turowski, J.M., Wyss, C.R., Beer, A.R., 2015. Grain size effects on energy delivery to the streambed and links to bedrock erosion. Geophysical Research Letters 42, 1775–1780.
67. Újvári, G., Kovács, J., Varga, G., Raucsik, B., Marković, S.B., 2010. Dust flux estimates for the Last Glacial Period in East Central Europe based on terrestrial records of loess deposits: a review. Quaternary Science Reviews 29, 3157–3166.
68. Újvári, G., Molnár, M., Novothny Á., Páll-Gergely B., Kovács J., Várhegyi A., 2014. AMS 14C and OSL/IRSL dating of the Dunaszekcső loess sequence (Hungary): chronology for 20 to 150 ka and implications for establishing reliable age-depth models for the last 40 ka. Quaternary Science Reviews 106, 140–154.
69. Vandenberghe, J., 2013. Grain size of fine-grained windblown sediment: A powerful proxy for process identification. Earth-Science Reviews 121, 18–30.
70. Vandenberghe, J., Nugteren, G., 2001. Rapid climatic changes recorded in loess successions. Global and Planetary Change 28, 1–9.
71. Vandenberghe, J., Mücher, H.J., Roebroeks, W., Gemke, D., 1985. Lithostratigraphy and palaeoenvironment of the Pleistocene deposits at Maastricht-Belvèdère, Southern Limburg, The Netherlands. Mededelingen Rijks Geologische Dienst 39-1, 7–18.
72. Vandenberghe, J., An, Z.S., Nugteren, G., Lu, H., van Huissteden, J., 1997. New absolute time scale for the Quaternary climate in the Chinese loess region by grain-size analysis. Geology 25, 35–38.
73. Wacha, L., Galović, L., Koloszár, L., Magyari, Á., Chikán, G., Marsi, I., 2013. The chronology of the Šarengrad II loess-palaeosol section (Eastern Croatia). Geologica Croatica 66/3, 191–203.
74. Zeeden, C., Laag, C., Camps, P., Guyodo, Y., Hambach, U., Just, J., Lurcock, P., Rolf, C., Satolli, S., Scheidt, S., Wouters, S., 2020. Towards data interchangeability in palaeomagnetism, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-10627, https://doi.org/10.5194/egusphere-egu2020-10627
75. Zhou, L.P., Oldfield, F., Wintle, A.G., Robinson, S.G., Wang, J.T., 1990. Partly pedogenic origin of magnetic variations in Chinese loess. Nature 346, 737–739.
76. Zhu, R., Liu, Q., Jackson, M.J., 2004. Palaeoenvironmental significance of the magnetic fabrics in Chinese loess-palaeosols since the last interglacial ( 130 ka). Earth and Planetary Science Letters 221, 55–69.
Go to article

Authors and Affiliations

Dávid Molnár
1 2
László Makó
1 2
Péter Cseh
1 2
Pál Sümegi
1 2
István Fekete
3
Lidija Galović
4

  1. Department of Geology and Paleontology, University of Szeged, H-6722 Szeged, Egyetem u. 2-6, Hungary
  2. University of Szeged, Interdisciplinary Excellence Centre, Institute of Geography and Earth Sciences, Long Environmental Changes research team, H-6722 Szeged, Egyetem u. 2-6, Hungary
  3. Department of Physical Geography and Geoinformatics, University of Szeged, H-6722 Szeged, Egyetem u. 2-6, Hungary
  4. Croatian Geological Survey, Sachsova 2, 10001 Zagreb, Croatia
Download PDF Download RIS Download Bibtex

Abstract

Tonnacypris glacialis (G.O. Sars, 1890) is a meiobenthic species widely distributed in Arctic freshwater lakes. Field study of its life cycle as well as the laboratory experiments showed clearly that only one generation of this ostracod species occurs during the vegetation season, and that the condition necessary for the next generation to appear is eggs freezing.

Go to article

Authors and Affiliations

Barbara Wojtasik

This page uses 'cookies'. Learn more