Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The squash beetle Epilachna chrysomelina (F.) is an important insect pest which causes severe damage to cucurbit plants in Iraq. The aims of this study were to isolate and characterize an endogenous isolate of Myrothecium-like species from cucurbit plants and from soil in order to evaluate its pathogenicity to squash beetle. Paramyrothecium roridum (Tode) L. Lombard & Crous was isolated, its phenotypic characteristics were identified and ITS rDNA sequence analysis was done. The pathogenicity of P. roridum strain (MT019839) was evaluated at a concentration of 107 conidia · ml–1) water against larvae and adults of E. chrysomelina under laboratory conditions. The results revealed the pathogenicity of the isolate to larvae with variations between larvae instar responses. The highest mortality percentage was reported when the adults were placed in treated litter and it differed significantly from adults treated directly with the pathogen. Our results documented for the first time that P. roridum has potential as an insect pathogen.
Go to article

Bibliography

1. Abbott W.S. 1925. A method for computing the effectivenss of an insecticide. Journal of Economic Entomology 8: 265–277.
2. Abdullah S.K., Abbas B.A. 2008. Fungi inhabiting surface sediments of Shatt Al-Arab River and its creeks at Basrah, Iraq. Basrah Journal of Science (B) 26 (1): 68–81.
3. Abdullah S.K., Al-Mosawi K.A. 2010. Fungi associated with seeds of sunflower ( Helianthus annuus) cultivars grown in Iraq. Phytopathologia 57: 11–20.
4. Abdullah S.K., Monfort E., Asensio L., Salinas J., LopezLlorca L.V., Jansson H.B. 2010. Mycobiota of date palm plantations in Elche, SE Spain. Czech Mycology 61 (2): 149–162.
5. Abdullah S.K., Saadullah A.A. 2013. Soil mycobiota at grapevine plantations in Duhok, North Iraq. Mesopotamia Journal of Agriculture 41 (1): 437–447.
6. Abdullah S.K., Zora S.E. 1993. Soil microfungi from date palm plantations in Iraq. Basrah Journal of Science 11 (1): 45–57.
7. Abdul-Rassoul M.S. 1976. Check list of insects of Iraq. Natural History Research Centre, Publication No. 30: 1-41.
8. AmithaV., Shylaja M.D., Nalini M.S. 2014. Fungal endophytes from culinary herbs and their antioxidant activity. International Journal of Current Research 6 (8): 7996–8002.
9. Arnold A.E. 2007. Understanding the diversity of foliar endophytic fungi: progress, challenges, and frontiers. Fungal Biology Reviews 21: 51–66.
10. Assaf L.H., Hassan F.R., Younis G.H. 2011. Evaluation of the Entomopathogenic fungi, Beauveria bassiana (Bals.)Vuill.and Paecilomyces farinosus (Dicks ex Fr.) against the Poplar Leaf Beetle Melasoma populi L. Agriculture and Veterinary Sciences 14: 35-44.
11. Awadalla S.S., Abd-Wahab H.A., Abd El-Baky N.F., Abdel-Salam S.S. 2011. Host plant preference of the melon ladybird beetle Epilachna chrysomelina (F.) (Coleoptera: Coccinellidae) on different cucurbit vegetables in Mansoura region. Journal of Plant Protection and Pathology 2 (1): 41–47.
12. Bharath B.G., Likesh S., Yashovarma B., Prakash H.S., Shetty H.S. 2006. Seed-borne nature of Myrothecium roridium in watermelon seeds. Research Journal of Botany 1 (1): 44–45. DOI: 10.3923/rib.2006.44.45.
13. Bosio P., Siciliano I., Gilardi G., Gullino, M.L., Garibaldi A. 2017. Verrucarin A and roridin E produced on rocket by Myrothecium roridium under different temperatures and CO2 levels. World Mycotoxin Journal 10: 229–236.
14. Chavan S.B.,Vidhate R.P., Kallure G.S., Dandawate N.L., Khire J.M., Deshpande M.V. 2017. Stability studies of cuticle and mycolytic enzymes of Myrothecium verrucaria for control of insect pests and fungal phytopathogens. Indian Journal of Biotechnology 16: 404–412.
15. Domsch K.H., Gams W., Anderson T. 2007. Compendium of Soil Fungi. 2nd ed. IHW Verlag, Eching, Germany, 672 pp.
16. Gindin G., Levski S., Glazer I., Soroker V. 2006. Evaluation of the entomopathogenic fungi Metarhizium anisopliae and Beauveria bassiana against the red palm weevil Rhynchophorus ferrugineus. Phytoparasitica 34: 370–379.
17. Han K.S., Choi S.K., Kim H.H., Lee S.C., Park J.H., Cho M.R., Park M.J. 2014. First report of Myrothecium roridium causing leaf and stem rot disease of Pepteromia quadrangularis in Korea. Mycobiology 42 (2): 203–205. DOI: 10.5941/MYCO.2014.42.2.203
18. Hassan F.R. 2003. Studies in poplar leaf beetle Melasoma (= Chrysomela) populi L. (Chrysomelidae: Coleoptera) in Duhok region. M.Sc. thesis, University of Duhok, College of Agriculture, Iraq, 83 pp.
19. Hassan F.R. 2019. Selective Isolation and Biomass Production of Beauveria bassiana and its Virulence to Squash Beetle Epilachna chrysomelina F. Ph.D dissertation, College of Agricultural Engineering Sciences, University of Duhok, Iraq, 165 pp.
20. Hassan F.R., Abdullah S.K., Assaf L.H. 2019. Pathogenicity of the entomopathogenic fungus, Beauveria bassiana (Bals.) Vuill. endophytic and a soil isolate against the squash beetle, Epilachna chrysomelina (F.) (Coleoptera: Coccinellidae). Egyptian Journal of Biological Pest Control 29: 74. DOI: 10.1186/s41938-019-0169-x
21. Haudenshield J.S., Pawlowski M., Miranda C., Hartman G.L. 2018. First report of Paramyrothecium roridium causing Myrothecium leaf spot on soybean in Africa. Plant Disease 102 (12): 2638. DOI: 10.1094/PDIS-04-18-0624-PDN
22. Ismail A.L.S., Abdullah S.K. 1977. Studies on the soil fungi of Iraq. Proceedings of the Indian Academy of Sciences-Section B 86 (3): 151–154.
23. Kwon H.W., Kim J.Y., Choi M.Ah., Son S.Y., Kim S.H. 2014. Characterization of Myrothecium roridium isolated from imported Anthurium plant culture medium. Mycobiology 42 (1): 82–85. DOI: 10.5941/MYCO.2014.42.1.82
24. Lee H.B., Kim J.C., Hong K.S., Kim C.J. 2008. Evaluation of fungal strain, Myrothecium roridium F0252, as a bioherbicide agent. The Plant Pathology Journal 24 (2): 453–460.
25. Li T.-X., Xiong Y.-M., Chen X., Yang Y.-N., Wang, Jia X.-W., Yang X.-P., Tan L.-L., Xu C.-P. 2019. Antifungal macrocyclic Trichothecens from the insect-associated fungus Myrothecium roridium. Journal of Agriculture and Food Chemistry 67 (47): 13033–13039. DOI: 10.1021/acs.jafc.9b04507.
26. Liang J., Li G., Zhou S., Zhao M., Cai l. 2019. Myrothecium-like new species from turfgrasses and associated rhizosphere. MycoKeys 51: 29–53. DOI: 10.3897/mycokeys.51.31957.
27. Liu J.Y., Huang L.L., Ye Y.H., Zou W.X., Guo Z.J., Tan R.X. 2006. Antifungal and new metabo¬lites of Myrothecium sp. Z16, a fungus associated with white croaker Argyromosumar¬gentatus. Journal of Applied Microbiology 100: 195–202. DOI: https://doi.org/10.1111/j.1365- 2672.2005.02760.x
28. Liu H.X., Liu W.Z., ChenY.C., Sun Z.H., Tan Y.Z., Li H.H., Zhang W.M. 2016. Cytotoxic trichothecene macrolides from the endophyte fungus Myrothecium roridium. Journal of Asian Natural Products Research 18 (7): 684–689. DOI: 10.1080/10286020.2015.1134505.
29. Lombard L., Houbraken J., Decock C., Samson R.A., Meijer M., Reblova M., Groenewald J.Z., Crous P.W. 2016. Genetic hyper-diversity in Stachybotriaceae. Persoonia 36: 156–246. DOI: 10.3767/003158516X691582
30. Macia-Vicente J. G., Jansson H. B., Abdullah S. K., Descals E., Salinas J., Lopez-Llorca L. V. 2008. Fungal root endophytes from natural vegetation in Mediterranean environments with special reference to Fusarium spp. FEMS Microbiology Ecology 64: 90–105. DOI: 10.1111/j.1574-6941.2007. 00443.
31. Matic S., Gilardi G., Gullino M.L., Garibaldi A. 2019. Emergence of leaf spot disease on leafy vegetable and ornamental crops caused by Paramyrothecium and Albifimbria species. Phytopathology 109: 1053–1061. DOI: 10.1094/PHYTO-10-18-0396-R
32. Mou J.Y. 1975. Preliminary study on Myrothecium sp. (in Chinese). Applicationand Research on Entomogenous Fungus in China 2: 237–238.
33. Okunowo W.O., Gbenle G.O., Osuntoki A.A., Adekunle A.A., Ojokuku S.A. 2010. Production of cellulolytic enzymes by a phytopathogenic Myrothecium roridium and some avirulent fungal aisolates from water hyacinth. African Journal of Biotechnology 9 (7): 1074–1078. DOI: 10.5897/AJB09.1598
34. Pappachan A., Rahul K., Debashish Ch., Sivaprasad V. 2019. Phylogenetic analysis of Paramyrothecium roridium causing brown leaf spot of mulberry. International Journal of Current Microbiology and Applied Sciences 8(03): 1393–1399. DOI: 10.20546/ijcmas.2019.803.163
35. Parker B.L., Skinner M., Costa S.D., Gouli S., Reid W., El Bouhssini M. 2003. Entomopathogenic fungi of Eurygaster. integriceps Puton (Hemiptera: Scutelleridae): collection and characterization for development. Biological Control 27: 260–272.
36. Shen L., Ai C.Z., SongY.C.,Wang F.W., Jiao R.H., Zhang A.H., Man H.Z., Tan R.X. 2019. Cytotoxic trichothecene macrolides produced by the endophytic Myrothecium roridium. Journal of Natural Products 82 (6): 1503–1509.
37. Soliman M.S. 2020. Characterization of Paramyrothecium roridium (basionym Myrothecium roridium) causing leaf spot of strawberry. Journal of Plant Protection Research 60 (2): 141–149. DOI: 10.24425/jppr.2020.133308
38. Talukdar D., Dantre R.K. 2014. Biochemical studies on Myrothecium roridium Tode. ex. Fries causing leaf spot of soybean. Global Journal of Research Analysis 3: 7–9.
39. Tulloch M. 1972. The genus Myrothecium Tode ex Fr. Mycological Papers 130: 1–42.
40. Vidhate R., Singh J., Ghormade V., Chavan S.B., Patil A., Deshpande M.V. 2015. Use of hydrolytic enzymes of Myrothecium verrucaria and conidia of Metarhizium anisopliae, singly and sequentially to control pest and pathogens in grapes and their compatibility with pesticides used in the field. Biopesticides International 11 (1): 48–60.
41. Warcup J.H.1960. Methods for isolation and estimation of activity of fungi in soil. p. 3–21. In: "The Ecology of Soil Fungi" (D. Parkinson, J.S. Waid, eds.). Liverpool University Press, UK.
42. White T.J., Bruns T., Lee S., Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. p. 315–322. In: "PCR Protocols: A Guide to Methods and Aapplications" (M.A. Innis, D.H. Gelfand, J.J. Shinsky, T.J. White, eds.). Academic Press, San Diego, California, USA.

Go to article

Authors and Affiliations

Feyroz Ramadan Hassan
1
Nacheervan Majeed Ghaffar
2
Lazgeen Haji Assaf
3
Samir Khalaf Abdullah
4

  1. Department of Plant Protection, College of Agricultural Engineering Sciences, University of Duhok, Kurdistan Region, Duhok, Iraq
  2. Duhok Research Center, College of Veterinary Medicine, Duhok University, Kurdistan Region, Duhok, Iraq
  3. Plant Protection, General Directorate of Agriculture-Duhok, Kurdistan Region, Duhok, Iraq
  4. Department of Medical Laboratory Techniques, Al-Noor University College, Nineva, Iraq
Download PDF Download RIS Download Bibtex

Abstract

Strawberry plants showing symptoms of leaf spots and petiole lesions were collected from El Qalubya governorate, which is one of the most famous areas that extensively grows strawberry in Egypt. The objectives of this study were to isolate and characterize the causal pathogen of the disease. The isolated pathogen was identified as Paramyrothecium roridum (formerly known as Myrothecium roridum) based on its morphological characteristics and sequencing the partial rDNA internal transcribed spacer (ITS). A pathogenicity test using detached leaf assay revealed that P. roridum is a potential pathogen of strawberry. Symptoms started as small necrotic areas which expanded rapidly to macerate whole leaflets and petioles. In advanced stages of infection, dark olive green sporodochia were clearly distinguished on the infected tissues. Six strawberry cultivars showed different levels of susceptibility to P. roridum. Florida was the most resistant cultivar while Beauty, Camarosa, Fortuna and Sweet Charlie were susceptible. Festival showed a moderate level of susceptibility. An in vitro assay on the effect of the liquid culture filtrate of P. roridum on strawberry leaves showed that the filtrate caused damage to tissues and clear necrotic symptoms were developed. High performance liquid chromatograph (HPLC) analysis on the filtrate of 10 day old P. roridum culture revealed the presence of various mycotoxins. The two major toxins detected were 8-alpha-hydroxyroridin H and myrothecin A in addition to other trichothecenes. Data also revealed the capability of P. roridum to produce polygalacturonase (PG) and cellulase (Cx) enzymes in liquid cultures. The activity of PG was found to be significantly correlated with the age of the growth culture. This is the first record of P. roridum on strawberry in Egypt.

Go to article

Authors and Affiliations

Maali Shaker Soliman

This page uses 'cookies'. Learn more