Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This study examines the pyrolysis of a single cylindrical wood particle using particle image velocimetry (PIV). The pyrolysis was conducted inside a pyrolysis reactor designed for this purpose. The experimental setup presented in this paper is capable of effectively characterizing the intensity of pyrolysis based on velocity distribution in the vicinity of wood particles. The results of the gas velocity distribution show that evaporation of moisture has as a major impact on the formation of the gas cushion as devolatilization.
Go to article

Authors and Affiliations

Dariusz Kardaś
Jacek Kluska
Karol Ronewicz
Download PDF Download RIS Download Bibtex

Abstract

The micro-Particle Image Velocimetry (micro-PIV) was used to measure flow velocities in micro-channels

in two passive micromixers: a microfluidic Venturi mixer and a microfluidic spiral mixer, both preceded

by standard “Y” micromixers. The micro-devices were made of borosilicate glass, with micro-engineering

techniques dedicated to micro-PIV measurements. The obtained velocity profiles show differences in the

flow structure in both cases. The micro-PIV enables understanding the micro-flow phenomena and can help

to increase reproducibility of micromixers in mass production.

Go to article

Authors and Affiliations

Dariusz Witkowski
Wojciech Kubicki
Jan A. Dziuban
Darina Jašíková
Anna Karczemska
Download PDF Download RIS Download Bibtex

Abstract

The airflow in the mouth of an open and closed flue organ pipe of corresponding geometrical proportions is studied. The phase locked particle image velocimetry with subsequent analysis by the biorthogonal decomposition is employed in order to compare the flow mechanisms and related features. The most significant differences lie in the mean velocity distribution and rapidity of the jet lateral motion. Remarks on the pressure estimation from PIV data and its importance for the aeroacoustic source terms are made and a specific example is discussed.

Go to article

Authors and Affiliations

Viktor Hruška
Pavel Dlask
Download PDF Download RIS Download Bibtex

Abstract

The aim of the paper was to develop determination methods of sedimentation characteristics using PIV image anemometry and suspension image analysis. Two methods of the investigation of sed- imentation process based on visualization techniques were developed. In the first one, using PIV method, vector fields of the velocity of settling particles are determined and then average particle velocities are calculated to establish the so called sedimentation dynamics curve. In the second one, the methods of suspension image analysis are utilized to determine the positions of the upper dis- continuity and to establish the sedimentation curve. Laboratory research on the sedimentation of agalit particles suspended in glycerine was conducted (using PIV method). Additionally, industrial research on the sedimentation of water-absorbing granular material used after the first carbonation (carbonation I) was conducted in a sugar factory (using the second method). The research consisted of photographic registration of images of the settling suspension by means of the time-lapse photog- raphy technique. A laboratory study was conducted for four values of the volume concentration of agalit particles in glycerine (0.5; 1.0; 1.5 and 2.0 vol%). The research methodology, the scope of the conducted measurements and sample research results together with conclusions are presented in this paper.

Go to article

Authors and Affiliations

Witold Suchecki
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, the energy cost is very high and this problem is carried out to seek techniques for improvement of the aerothermal and thermal (heat flow) systems performances in different technical applications. The transient and steady-state techniques with liquid crystals for the surface temperature and heat transfer coefficient or Nusselt number distribution measurements have been developed. The flow pattern produced by transverse vortex generators (ribs) and other fluid obstacles (e.g. turbine blades) was visualized using liquid crystals (Liquid Crystal Thermography) in combination with the true-colour image processing as well as planar beam of double-impulse laser tailored by a cylindrical lens and oil particles (particle image velocimetry or laser anemometry). Experiments using both research tools were performed at Gdańsk University of Technology, Faculty of Mechanical Engineering. Present work provides selected results obtained during this research.

Go to article

Authors and Affiliations

Jan A. Stąsiek
Marcin Jewartowski
Download PDF Download RIS Download Bibtex

Abstract

This study is concerned with liquid flow induced by a disk which rotates steadily around its axis and touches the free surface of liquid contained in a cylindrical vessel. It is a simplified model of the flow in the inlet part of a vertical cooling crystallizer where a rotary distributor of inflowing solution is situated above the free surface of solution contained in the crystalliser. Numerical simulations of flow phenomena were conducted and the simulation results were interpreted assuming an analogy with Kármán’s theoretical equations. In a cylindrical coordinate system, the components of flow velocity were identified as functions of distance from the surface of the rotating disk. The experimental setup was developed to measure velocity fields, using digital particle velocimetry and optical flow. Conclusions concerning the influence of disc rotation on liquid velocity fields were presented and the experimental results were found to confirm the results of numerical simulation. On the basis of simulation data, an approximation function was determined to describe the relationship between the circumferential component of flow velocity and the distance from the disk.

Go to article

Authors and Affiliations

Witold Suchecki
Download PDF Download RIS Download Bibtex

Abstract

Particle Image Velocimetry is getting more and more often the method of choice not only for visualization of turbulent mass flows in fluid mechanics, but also in linear and non-linear acoustics for non-intrusive visualization of acoustic particle velocity. Particle Image Velocimetry with low sampling rate (about 15Hz) can be applied to visualize the acoustic field using the acquisition synchronized to the excitation signal. Such phase-locked PIV technique is described and used in experiments presented in the paper. The main goal of research was to propose a model of PIV systematic error due to non-zero time interval between acquisitions of two images of the examined sound field seeded with tracer particles, what affects the measurement of complex acoustic signals. Usefulness of the presented model is confirmed experimentally. The correction procedure, based on the proposed model, applied to measurement data increases the accuracy of acoustic particle velocity field visualization and creates new possibilities in observation of sound fields excited with multi-tonal or band-limited noise signals.

Go to article

Authors and Affiliations

Witold Mickiewicz
Download PDF Download RIS Download Bibtex

Abstract

The flow structure around rising single air bubbles in water and their characteristics, such as equivalent diameter, rising velocity and shape, was investigated using Particle Image Velocimetry (PIV) and Shadowgraphy in a transparent apparatus with a volume of 120 mL. The effect of different volumetric gas flow rates, ranging from 4 μL/min to 2 mL/min on the liquid velocity was studied. Ellipsoidal bubbleswere observedwith a rising velocity of 0.25–0.29m/s. It was found that a Kármán vortex street existed behind the rising bubbles. Furthermore, the wake region expanded with increasing volumetric gas flow rate as well as the number and size of the vortices.

Go to article

Authors and Affiliations

Björn Lewandowski
Michał Fertig
Georg Krekel
Mathias Ulbricht

This page uses 'cookies'. Learn more