Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The article presents selected results of research on improving pedestrian traffic safety. Based on annually-updated accident statistics made available by the police, as well as the new pedestrian traffic regulations in force, detailed work was undertaken to assess the level of visibility of pedestrians by drivers in pedestrian crossing areas. The research was carried out by analyzing several characteristic cases of pedestrian crossings occurring in Poland, in which there was only dedicated lighting for crossings, only street lighting, and a variant of coexistence of both of the above lighting solutions. Illuminance measurements were made in the horizontal and vertical planes of pedestrian crossings, and the results were confronted with the relevant guidelines. The next step involved a complementary measurement of the luminance distribution of the vertical plane containing the pedestrian and a portion of the sub- and super-horizontal background. Visibility pedestrians was considered in positive and negative contrast variants, and was then related to the obtained results of the illumination distribution. The analysis of the results of the study indicated the possibility of limited visibility of pedestrians at the crossings despite the satisfactory results obtained from measurements of the illuminance distribution within the crossings.
Go to article

Authors and Affiliations

Sebastian Różowicz
1
ORCID: ORCID
Krzysztof Baran
2
ORCID: ORCID
Antoni Różowicz
1
ORCID: ORCID
Marcin Leśko
2
ORCID: ORCID
Lubomír Beňa
3
ORCID: ORCID

  1. Department of Industrial Electrical Engineering and Automatic Control Kielce University of Technology Tysiąclecia Państwa Polskiego 7, 25-314 Kielce, Poland
  2. Department of Power Electronics and Power Engineering, Rzeszow University of Technology Wincentego Pola 2, 35-959 Rzeszow, Poland
  3. Department of Electrical Power Engineering, Faculty of Electrical Engineering and Informatics (FEI) Technical University of Kosice, Letna 9, Kosice, 040 01, Slovakia
Download PDF Download RIS Download Bibtex

Abstract

The ongoing period of the pandemic makes everybody focused on the matters related to fighting this immense problem posed to the societies worldwide. The governments deal with the threat by publishing regulations which should allow to mitigate the pandemic, walking on thin ice as the decision makers do not always know how to properly respond to the threat in order to save people. Computer-based simulations of e.g. parts of the city or rural area should provide significant help, however, there are some requirements to fulfill. The simulation should be verifiable, supported by the urban research and it should be possible to run it in appropriate scale. Thus in this paper we present an interdisciplinary work of urban researchers and computer scientists, proposing a scalable, HPC-grade model of simulation, which was tested in a real scenario and may be further used to extend our knowledge about epidemic spread and the results of its counteracting methods. The paper shows the relevant state of the art, discusses the micro-scale simulation model, sketches out the elements of its implementation and provides tangible results gathered for a part of the city of Krakow, Poland.
Go to article

Bibliography

  1.  I. Mironowicz, Modele transformacji miast. Wrocław: Oficyna Wydawnicza Politechniki Wrocławskiej, 2016.
  2.  A. Matusik, K. Racoń-Leja, M. Gyurkovich, and K. Dudzic-Gyurkovich, “Hydrourban spatial development model for a resilient inner-city. the example of gdańsk,” Archit. City Environ., vol. 15, no. 43, pp. 1–2, 2020.
  3.  J.L. Kriken, P. Enquist, and R. Rapaport, City building: nine planning principles for the twenty-first century. Princeton Architectural Press, 2011.
  4.  W. Kosiński, Paradigm of the City of the 21st Century. Between the Past of the Polis and the Future of the Metropolis, J. Gyurkovich, Ed. Kraków: Wydaw. PK, 2016.
  5.  J.F.P. Rose, The well-tempered city: what modern science, ancient civilizations, and human nature teach us about the future of urban life. Harper Wave, 2017.
  6.  E. Rewers, Post-Polis. Wstęp do filozofii ponowoczesnego miasta. Kraków: Universitas, 2005, [in Polish].
  7.  M. Dymnicka, Przestrzeń publiczna, a przemiany miasta. Warszawa: Wydawnictwo Naukowe Scholar, 2013, [in Polish].
  8.  M. Gyurkovich et al., Hybrid Urban Structures, M. Gyurkovich, Ed. Kraków: Wydaw. PK, 2016.
  9.  S. Kostof, The City Shaped.Urban Patterns and Meanings through History. London – New York: Thames & Hudson, 1999.
  10.  A.A. Kantarek, Tkanka urbanistyczna.Wybrane zagadnienia, J. Gyurkovich, Ed. Kraków: Wydaw. PK, 2019, [in Polish].
  11.  A. Noworól, “Functional urban area as the city of the future,” Tech. Trans., vol. 111, no. 1-A, 2014.
  12.  K. Racoń-Leja, Miasto i wojna: wpływ II wojny światowej na przekształcenia struktury przestrzennej i współczesną kondycję urbanistyczną wybranych miast europejskich, J. Gyurkovich, Ed. Kraków: Wydaw. PK, 2019, [in Polish].
  13.  J. Teller, “Urban density and covid-19: towards an adaptive approach,” Build. Cities, vol. 2, no. 1, pp. 150–165, 2021.
  14.  C. at Johns Hopkins University, “Covid-19 dashboard by the center for systems science and engineering,” 2021, [Online] Available: https:// coronavirus.jhu.edu/map.html.
  15.  M. Castells, “Communication, power and counter-power in the network society,” Int. J. Commun., vol. 1, no. 1, p. 29, 2007.
  16.  R. Sennet, “How should we live? density in postpandemic cities,” Domus, no. 1046, 2020, [Online]. Available: https://www.domusweb. it/en/architecture/2020/05/09/how-should-we-live-density-in-post-pandemic-cities.html.
  17.  M. Kowicki, Rozproszenie zabudowy na obszarach Małopolski, a kryzys kreatywności opracowań planistyczno-przestrzennych. Kraków: Wydaw. PK, 2014, [in Polish].
  18.  G. Korzeniak et al., Małe i średnie miasta w policentrycznym rozwoju Polski. Kraków: Instytut Rozwoju Miast, 2014, [in Polish].
  19.  GUS, “Demographic Yearbook of Poland,” 2019.
  20.  N.A. Salingaros, “Eight city types and their interactions: the “eight-fold” model,” Techn. Trans., vol. 2, pp. 5–70, 2017.
  21.  J. Busquets and M. Corominas, Cerda and the Barcelona of the future: reality versus project. Centre de Cultura Contemporania de Barcelona, 2009.
  22.  A.A. Kantarek, K. Kwiatkowski, and I. Samuels, “From rural plots to urban superblocks,” Urban Morphology: journal of the International Seminar on Urban Form, vol. 22, no. 2, pp. 155–157, 2018.
  23.  M. Gyurkovich and A. Sotoca, “Towards the Cracow Metropolis – a dream or a reality? A selected issues,” Tech. Trans., vol. 115, no. 2, pp. 5–25, 2018.
  24.  P. Lorens, Równoważenie rozwoju przestrzennego miast polskich. Gdańsk: Wydaw. PG, 2013, [in Polish].
  25. Back to the Sense of the City: 11th VCT International monograph book, Year 2016, July, Krakow. Barcelona: Centre of Land Policy and Valuations (CPSV), 2016.
  26.  A. Zwoliński, “Geometrical structure of public spaces in virtual city models. exploring urban morphology by hierarchy of open spaces,” Space Form, vol. 2019, no. 37, pp. 235–243, 2019.
  27.  K. Lynch, Good city form. MIT Press, 2001.
  28.  D.C. Duives, W. Daamen, and S.P. Hoogendoorn, “State-ofthe-art crowd motion simulation models,” Transp. Res. Part C Emerging Technol., vol. 37, pp. 193–209, 2013.
  29.  E.D. Kuligowski, “Computer evacuation models for buildings,” in SFPE Handbook of Fire Protection Engineering. Springer, 2016, pp. 2152–2180.
  30.  B. Zhan, D.N. Monekosso, P. Remagnino, S.A. Velastin, and L.-Q.Xu, “Crowd analysis: a survey,” Mach. Vision Appl., vol. 19, no. 5‒6, pp. 345–357, 2008.
  31.  K. Teknomo, Y. Takeyama, and H. Inamura, “Review on microscopic pedestrian simulation model,” CoRR, vol. abs/1609.01808, 2016. [Online]. Available: http://arxiv.org/abs/1609.01808.
  32.  M. Paciorek, A. Bogacz, and W. Turek, “Scalable signal-based simulation of autonomous beings in complex environments,” in Computational Science – ICCS 2020. Cham: Springer International Publishing, 2020, pp. 144–157.
  33.  J. Wąs and R. Lubaś, “Towards realistic and effective agentbased models of crowd dynamics,” Neurocomputing, vol. 146, pp. 199–209, 2014.
  34.  P. Wittek and X. Rubio-Campillo, “Scalable agent-based modelling with cloud hpc resources for social simulations,” in 4th IEEE International Conference on Cloud Computing Technology and Science Proceedings. IEEE, 2012, pp. 355–362.
  35.  J. Bujas, D. Dworak, W. Turek, and A. Byrski, “Highperformance computing framework with desynchronized information propagation for large-scale simulations,” J. Comput. Sci, vol. 32, pp. 70–86, 2019.
  36.  Y. Mohamadou, A. Halidou, and P.T. Kapen, “A review of mathematical modeling, artificial intelligence and datasets used in the study, prediction and management of covid-19,” Appl. Intell, vol. 50, no. 11, pp. 3913–3925, 2020.
  37.  M. Fuentes and M. Kuperman, “Cellular automata and epidemiological models with spatial dependence,” Physica A, vol. 267, no. 3, pp. 471‒486, 1999.
  38.  I. Tiwari, P. Sarin, and P. Parmananda, “Predictive modeling of disease propagation in a mobile, connected community using cellular automata,” Chaos: Interdiscip. J. Nonlinear Sci., vol. 30, no. 8, p. 081103, 2020.
  39.  M. Dascalu, M. Malita, A. Barbilian, E. Franti, and G.M. Stefan, “Enhanced cellular automata with autonomous agents for covid-19 pandemic modeling,” Rom. J. Inf. Sci. Technol, vol. 23, pp. S15–S27, 2020.
  40.  Y. Xiao, M. Yang, Z. Zhu, H. Yang, L. Zhang, and S. Ghader, “Modeling indoor-level non-pharmaceutical interventions during the covid-19 pandemic: a pedestrian dynamics-based microscopic simulation approach,” Transp. Policy, vol. 109, pp. 12–23, 2021.
  41.  T. Kapecki, “Elements of sustainable development in the context of the environmental and financial crisis and the covid-19 pandemic,” Sustainability, vol. 12, no. 15, pp. 1–12, 2020.
  42.  A. Jasiński, “Public space or safe space–remarks during the covid-19 pandemic,” Tech. Trans., vol. 117, no. 1, 2020.
  43.  S. Gzell, “Urban design and the sense of the city,” Tech. Trans., vol. 113, no. 2-A, pp. 15–19, 2016.
  44.  M. Hanzl, “Urban forms and green infrastructure–the implications for public health during the covid-19 pandemic,” Cities Health, pp. 1–5, 2020, doi: 10.1080/23748834.2020.1791441.
  45.  M.D. Pinheiro and N.C. Luís, “Covid-19 could leverage a sustainable built environment,” Sustainability, vol. 12, no. 14, p. 5863, 2020.
  46.  M.R. Fatmi, “Covid-19 impact on urban mobility,” J. Urban Manage., vol. 9, no. 3, pp. 270–275, 2020.
  47.  A. Porębska, P. Rizzi, S. Otsuki, and M. Shirotsuki, “Walkability and resilience: A qualitative approach to design for risk reduction,” Sustainability, vol. 11, no. 10, p. 2878, 2019.
  48.  F. Vergara Perucich, J. Correa Parra, and C. Aguirre-Nuñez, Atlas de indicadores espaciales de vulnerabilidad ante el covid-19 en Chile, F. Vergara, Ed. Centro Producción del Espacio, 2020.
  49.  W.H. Whyte et al., The social life of small urban spaces. Conservation Foundation Washington, DC, 1980.
  50.  A. Białkiewicz, B. Stelmach, and M.J. Żychowska, “Dobra kultury współczesnej. zarys problemu ochrony,” Wiadomości Konserwatorskie – J. Heritage Conserv., no. 63, pp. 152–162, 2020, [in Polish].
  51.  E. Szczerek, Rewitalizacja osiedli wielkopłytowych a ciągłośc´ i komplementarność przestrzeni publicznej miasta, A. Franta, Ed. Kraków: Wydaw. PK, 2018, [in Polish].
  52.  B. Malinowska-Petelenz, Sacrum in civitas: wybrane zagadnienia, A.A. Kantarek, Ed. Kraków: Wydaw. PK, 2018, [in Polish].
  53.  J. Gehl and B. Svarre, How to study public life. Washington, DC: Island press, 2013.
Go to article

Authors and Affiliations

Mateusz Paciorek
1
ORCID: ORCID
Damian Poklewski-Koziełł
2
ORCID: ORCID
Kinga Racoń-Leja
2
ORCID: ORCID
Aleksander Byrski
1
ORCID: ORCID
Mateusz Gyurkovich
2
ORCID: ORCID
Wojciech Turek
1
ORCID: ORCID

  1. AGH University of Science and Technology, al. Adama Mickiewicza 30, 30-059 Krakow, Poland
  2. Cracow University of Technology, ul. Warszawska 24, 31-155 Krakow, Poland
Download PDF Download RIS Download Bibtex

Abstract

An analysis of sustainable development goals made it possible to distinguish three key aspects of shaping pedestrian-friendly streets: the functional, social, and environmental ones. Focusing on these selected aspects, the main threats to this group of users in the Polish streets were presented. Based on the analysis of the standards and good practices in street design from the recent years for selected Polish cites, the main directions of activities and solutions aimed at eliminating threats making up the contemporary trends in shaping urban streets were identified.
Go to article

Bibliography

Ahmed, N., Elshater, A., Afifi, S. (2019), ‘The Community Participation in the Design Process of Livable Streets’ [in:] Bassioni G. i in. (eds.) Innovations and Interdisciplinary Solutions for Underserved Areas. InterSol, 2019. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 296, Cham: Springer, https://doi.org/10.1007/978-3-030-34863-2_13.
Appleyard, B., Cox, L. ‘At home in the Zone. Creating livable streets in the U.S.’, Planning, 72(9)2006, pp. 30–35.
Appleyard, D., Gerson, M.S., Lintel, M. (1981), Livable streets, Berkeley: University of California Press.
Bell, S. (2004), Elements of Visual Design in the Landscape, London & New York: Spon Press.
Bierwiaczonek, K. (2016), Społeczne znaczenie miejskich przestrzeni publicznych, Katowice: Wydawnictwo Uniwersytetu Śląskiego.
Brzeziński, A. (2015) ‘Czym może być zrównoważony transport miejski’ [w:] Kalinowska, A. (red.) Miasto idealne — miasto zrównoważone. Planowanie przestrzenne terenów zurbanizowanych i jego wpływ na ograniczenie skutków zmian klimatu, Warszawa: Uniwersytet Warszawski, pp. 53–60.
Brzeziński, A. (red.) (2013), Poradnik. Organizacja przestrzeni ulic w obszarach śródmiejskich, Warszawa: TransEko.
Cichy-Pazder, E., Markowski, T. (2009), ‘Karta Przestrzeni Publicznej’, Materiały III Kongresu Urbanistyki Polskiej, Nowa Urbanistyka — nowa jakość życia, Urbanista, 15, pp. 14–18.
City Resilience Profiling Tool (2018) UN Habitat, [online] http://urbanresiliencehub.org/wp-content/uploads/2018/10/CRPT-Guide-Pages-Online.pdf, (accessed: 11.03.2021).
Colville-Andersen, M. (2019), Być jak Kopenhaga. Duński przepis na miasto szczęśliwe, Kraków: Wydawnictwo Wysoki Zamek.
Engwicht, D. (1999), Street reclaiming: creating livable streets and vibrant communities, Gabriola Island: New Society Publishers.
Fonseca, F. et al. (2019), ‘Smart Pedestrian Network: An Integrated Conceptual Model for Improving Walkability’ [in:] Pereira P. et al. (eds.) Society with Future: Smart and Liveable Cities, SC4Life 2019, Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, 318. Cham: Springer, https://doi.org/10.1007/978-3-030-45293-3_10.
Forsyth, A., Southworth, M. ‘Cities afoot: pedestrians, walkability and urban design’, Journal of Urban Design, 13(1)2008, pp. 1–3, https://doi.org/10.1080/13574800701816896.
Gdański Standard Ulicy Miejskiej (GSUM) (2020), Biuro Rozwoju Gdańska, [online] https://baw.bip.gdansk.pl/api/file/GetZipxAttachment/216/1188098/preview (accessed: 26.04.2021).
Gdańsk Programy Operacyjne 2023 (2015), Uchwała nr XVII/514/15 Rady Miasta Gdańska z dnia 17 grudnia 2015 roku.
Gehl, J. et al. (2006), New City Life, Kopenhagen: The Danish Architectural Press.
Gehl, J. (2017), Miasta dla ludzi, Kraków: Wydawnictwo RAM.
Global Street Design Guide (2016), Global Designing Cities, https://globaldesigningcities.org/publication/global-street-design-guide/, (accessed: 26.04.2021).
Gunawardena, K.R., Wells, M.J. i Kershaw, T. ‘Utilising green and bluespace to mitigate urban heat island intensity’, Science of The Total Environment, 584-585, 2017, pp. 1040–1055, https://doi.org/10.1016/j.scitotenv.2017.01.158.
Ignatieva, M., Stewart, G.H., Meurk, C. ‘Planning and design of ecological networks in urban areas’, Landscape and Ecological Engineering, 7, 2011, pp. 17–25, https://doi.org/10.1007/s11355-010-0143-y.
Im, J. ‘Green Streets to Serve Urban Sustainability: Benefits and Typology’, Sustainability, 11(22)2019, pp. 64–83, https://doi.org/10.3390/su11226483.
Jacobs, J. (1961), The Death and Life of Great American Cities, New York: The Modern Library.
Jasiński, A. ‘Wielkomiejski dylemat — przestrzeń publiczna czy przestrzeń bezpieczna’, Przestrzeń i Forma, 12, 2009, pp. 320–350.
Kabisch, N. et al. (eds.) (2017), Nature-Based Solutions to Climate Change Adaptation in Urban Areas, Cham: Springer International Publishing AG.
Karlikowska, J. i Kimic, K. ‘Idea uspokojenia ruchu ulic miejskich w XX i XXI wieku — przemiany w zakresie priorytetów społecznych i przyrodniczych’, Kwartalnik Architektury i Urbanistyki, 3, 2017, s. 87–113.
Kim, Y.J., Lee, C., Kim, J.H. ‘Sidewalk Landscape Structure and Thermal Conditions for Child and Adult Pedestrians’, International journal of environmental research and public health, 15(1)2018, 148, https://doi.org/10.3390/ijerph15010148.
Kimic, K. ‘Wspomaganie projektowania uniwersalnego przestrzeni publicznych przez zastosowanie technologii informacyjno-komunikacyjnych (ICT) w meblach miejskich’, Studia Komitetu Przestrzennego Zagospodarowania Kraju PAN, CLXXVI, 176, 2017, Warszawa: KPZK PAN, s. 175–196, https://doi.org/10.24425/118573
Kimic, K., Maksymiuk, G. i Suchocka, M. ‘The application of new technologies in promoting a healthy lifestyle: selected examples’, Bulletin of Geography. Socio-economic Series, 43, 2019, pp. 121–130, https://doi.org/10.2478/bog-2019-0008.
Kingsbury, K.T., Lowry, M.B. i Dixon, M.P., ‘What Makes a “Complete Street” Complete?: A Robust Definition, Given Context and Public Input’, Journal of the Transportation Research Board, 2245(1)2011, pp. 103–110, https://doi.org/10.3141/2245-13.
Lis, A. (2011), Struktura przestrzenna i społeczna terenów rekreacyjnych w osiedlach mieszkaniowych Wrocławia z lat 70.-80. ubiegłego stulecia, Wrocław: Wydawnictwo Uniwersytetu Przyrodniczego we Wrocławiu.
Lorens, P. (2007), Tematyzacja przestrzeni publicznej miasta, Gdańsk: Wydawnictwo Politechniki Gdańskiej.
Lusher, L. i Seaman, M. (2008), Streets to live by: How liveable street design can bring economic, health and quality-of-life benefits to New York City, e-book library. http://www.transalt.org/files/newsroom/reports/streets_to_live_by.pdf, (accessed: 14.03.2021).
Lusk, A.C., Ferreira da Silva Filho, D. i Dobbert, L. ‘Pedestrian and cyclist preferences for tree locations by sidewalks and cycle tracks and associated benefits: Worldwide implications from a study in Boston, MA’, Cities, 106, 102111, https://doi.org/10.1016/j.cities.2018.06.024.
Lynch, K. (2011), Obraz miasta, Kraków: Archiwolta.
Manderscheid, K. (2009), ‘Unequal Mobilities’ [in:] Ohnmacht T., Maksim H., Bergman M.M. (eds.) Mobilities and Inequality, London & New York: Routledge.
Mehta, V. (2013), The Street: A Quintessential Social Public Space, New York: Routledge.
Narodowy Program Bezpieczeństwa Ruchu Drogowego 2013–2020 (2013), Warszawa: Krajowa Rada Bezpieczeństwa Ruchu Drogowego.
Nawrath, M., Kowarik, I. i Fischer, L.K. ‘The influence of green streets on cycling behavior in European cities’, Landscape and Urban Planning, 190, 2019, 103598, https://doi.org/10.1016/j.landurbplan.2019.103598.
Nelicki, A., Zachariasz, I. ‘Skuteczność planowania przestrzennego na poziomie lokalnym a partycypacja społeczna’, Zarządzanie Publiczne, 2(4)2008, ss. 97–108.
Olszewski, P. et al. ‘Problems with assessing safety of vulnerable road users based on traffic accident data’, Archives of Civil Engineering, LXII(4/2)2016, pp. 149–168, https://doi.org/10.1515/ace-2015-0113.
Peñalosa, E. (2013), Why buses represent democracy in action, TED Conferences LLC, New York.
Plan adaptacji miasta Gdańska do zmian klimatu do roku 2030 (2019), Uchwała nr XIII/249/19 Rady Miasta Gdańska z dnia 29 sierpnia 2019 roku.
Plan Zrównoważonej Mobilności Miejskiej dla Gdańska 2030 (2018), Załącznik do uchwały Nr LV/1615/18 Rady Miasta Gdańska z dnia 28 czerwca 2018 roku.
Reclaiming city streets for people. Chaos or quality of life? (2004), European Commission, [online]. https://ec.europa.eu/environment/pubs/pdf/streets_people.pdf (accessed: 26.04.2021).
Rizwan, A.M., Dennis, L.Y.C., Liu, C. ‘A review on the generation, determination and mitigation of Urban Heat Island’, Journal of Environmental Sciences, 20(1)2008, pp. 120–128.
Safer roads for all. The EU good practice guide (2017), European Commission, [online] https://ec.europa.eu/transport/road_safety/sites/roadsafety/files/pdf/safer_roads4all.pdf (accessed: 26.04.2021).
Sarmiento, O.L. et al. ‘Reclaiming the streets for people: Insights from Ciclovías Recreativas in Latin America’, Preventive Medicine, 103(S)2017, pp. 34–40.
Sattlegger, L., Rau, H. ‘Carlessness in a car‐centric world: A reconstructive approach to qualitative mobility biographies research’, Journal of Transport Geography, 53(5)2016, pp. 22–31.
Säumel, I., Weber, F., Kowarik, I. ‘Toward livable and healthy urban streets: Roadside vegetation provides ecosystem services where people live and move’, Environmental Science & Policy, 62, pp. 24–33, https://doi.org/10.1016/j.envsci.2015.11.012.
Standardy planowania i projektowania ulic z uwzględnieniem zielono-niebieskiej infrastruktury (2020), Zarządzenie nr 2785/20 Prezydenta Wrocławia z dnia 20 marca 2020 roku w sprawie Standardów planowania i projektowania ulic z uwzględnieniem zielono-niebieskiej infrastruktury.
Strategia Rozwoju Miasta Gdańska 2030 Plus (2014), Uchwała nr LVII/1327/14 Rady Miasta Gdańska z dnia 25 września 2014 roku.
Strategia Rozwoju Systemu Transportu Pieszego (2011), Urząd m.st. Warszawy, Warszawa: TransEko.
Strategia Rozwoju #Warszawa2030 (2018), Uchwała Rady m.st. Warszawy nr LXVI/1800/2018 z 10 maja 2018 roku.
Strategia Wrocław 2030 (2018), Uchwała Nr LI/1193/18 z dnia 15 lutego 2018 roku w sprawie strategii rozwoju Wrocławia pod nazwą „Strategia Wrocław 2030”.
Strategia zrównoważonego rozwoju systemu transportowego Warszawy do 2015 roku i na lata kolejne (2009), Uchwała Rady m.st. Warszawy Nr LVIII/1749/2009 z 9 lipca 2009 roku.
Studium uwarunkowań i kierunków zagospodarowania przestrzennego miasta Gdańska (2018), Biuro Rozwoju Gdańska, Uchwała nr LI/1506/18 Rady Miasta Gdańska dnia 23 kwietnia 2018 roku.
Studium uwarunkowań i kierunków zagospodarowania przestrzennego m.st. Warszawy (2006), Uchwała Rady m.st. Warszawy nr LXXXII/2746/2006 z dnia 10 października 2006 roku (z późn. zm.).
Suchocka, M. et al. ‘Designing hotspots in the public spaces and public greenery of modern cities — selected issues’, Ecological Questions, 30(4)2019, pp. 83–91, http://dx.doi.org/10.12775/EQ.2019.030.
Suchocka, M., Siedlecka, M. ‘Powierzchniowe systemy infiltracyjne z możliwością retencji wody jako metoda odwadniania nawierzchni dróg i ulic’, Drogownictwo, 4, 2017, ss. 128–136.
Symon, E. (2020), Wypadki Drogowe w Polsce 2019, Warszawa: Instytut Transportu Samochodowego.
Szatan, M. ‘Zanikanie przestrzeni publicznej we współczesnych miastach’, Palimpsest — Czasopismo Socjologiczne, 2, 2012, s. 91–100.
Szczepanowska, H.B. ‘Drzewa w mieście — zielony kapitał wartości i usług ekosystemowych’, Człowiek i Środowisko, 39(2) 2015, s. 5–28.
Szopińska, E., Zygmunt-Rubaszek, J. (2010), Propozycja standardów w zakresie kształtowania zieleni wysokiej miejskich tras komunikacyjnych, Wrocław: Zarząd Zieleni Miejskiej we Wrocławiu.
Szulczewska, B. (2018), Zielona infrastruktura: czy koniec historii?, Studia KPZK, 189, Warszawa: PAN, Komitet Przestrzennego Zagospodarowania Kraju.
Tyburek, J. (2017), ‘Urban resilience, czyli zarządzanie kryzysami i zapewnianie odporności miejskiej 2.0’ [w:] Czapska J., Mączyński P., Struzińska K. (ed.) Bezpieczne miasto. W poszukiwaniu wiedzy przydatnej praktykom, Kraków: Wydawnictwo JAK, s. 168–191.
von Schönfeld, K.C, Bertolini, L. ‘Urban streets: Epitomes of planning challenges and opportunities at the interface of public space and mobility’, Cities, 68, 2017, pp. 48–55, https://doi.org/10.1016/j.cities.2017.04.012.
Wejchert, K. (1984), Elementy kompozycji urbanistycznej, Warszawa: Wydawnictwo Arkady.
Wieteska-Rosiak, B. ‘Hybrydyzacja przestrzeni publicznej miasta w kontekście adaptacji do zmian klimatu’, Studia Ekonomiczne. Zeszyty Naukowe Uniwersytetu Ekonomicznego w Katowicach, 365, 2018, s. 30–44.
Wiszniowski, J. (2019), Kształtowanie ulicy jako przestrzeni publicznej, Wrocław: Oficyna Wydawnictwa Politechniki Wrocławskiej.
Wrocławska Polityka Mobilności (2013), Załącznik do Uchwały nr XLVIII/1169/13 Rady Miejskiej Wrocławia z dnia 19 września 2013 roku.
Wrocławskie standardy kształtowania przestrzeni miejskich przyjaznych pieszym (2017), Wrocław: Gmina Wrocław.
Zarządzenie nr 1217/19 Prezydenta Wrocławia z dnia 28 czerwca 2019 roku w sprawie ochrony drzew i rozwoju terenów zieleni Wrocławia.
Zarządzenie nr 1682/2017 Prezydenta Miasta Stołecznego Warszawy z dnia 23 października 2017 roku w sprawie tworzenia na terenie miasta stołecznego Warszawy dostępnej przestrzeni, w tym infrastruktury dla pieszych ze szczególnym uwzględnieniem osób o ograniczonej mobilności i percepcji.
Żmudzka, E. (2012) ‘Zmiany częstości występowania chmur opadowych w Polsce (1966–2000)’ [w:] Magnuszewski, A. (red.) Hydrologia w ochronie i kształtowaniu środowiska, Monografie Komitetu Inżynierii Środowiska PAN, Warszawa: Komitet Inżynierii Środowiska PAN, 69, 2012, s. 71–81.
Go to article

Authors and Affiliations

Michelle Mbazuigwe
ORCID: ORCID
Kinga Kimic
1
ORCID: ORCID

  1. Warsaw University of Life Sciences — SGGW, Institute of Environmental Engineering, Department of Landscape Architecture
Download PDF Download RIS Download Bibtex

Abstract

In this paper, the distances between pedestrian crossings in twenty one places in the city of Wrocław, together with their evaluation by the researched groups of students, were analyzed. The database created from the collected questionnaires contains a set of two-dimensional variables: the distance between crossings and the rating of the students. The database set was analyzed using a fuzzy data mining approach to create particular clusters. Various numbers of clusters were analyzed, and the division of data into three clusters made it possible to relate the analysis to the LOS methodology. Each variable was enriched with a third dimension representing a membership value. The obtained evaluated distances are similar to values recommended in literature, although the distances highly evaluated by the students do not often occur in reality. This might suggest that there is the need to create new crossings, especially in the city centre, where pedestrian traffic is or should be important.

Go to article

Authors and Affiliations

M. Kruszyna
Download PDF Download RIS Download Bibtex

Abstract

The application of tuned liquid column dampers (TLCD) for suppressing excessive lateral pedestrian-induced vibrations of footbridges is investigated experimentally and numerically. In order to study the effectiveness of TLCD, a novel three-degree-of-freedom (DOF) bridge model is constructed in the laboratory of the TU-Institute. A single TLCD is attached to the bridge model to counteract the bridge's fundamental vibration mode. Modal tuning of the TLCD is performed using an analogy to tuned mass damper (TMD). A new excitation device has been developed for simulating the time-periodic contact forces due to walking pedestrians. All vibration tests performed indicate a large reduction of the maximum lateral vibration response amplitude. In order to verify the experimental results, numerical simulations of the laboratory model are performed, which show a good agreement. The application ofTLCD at least doubles the effective modal damping coefficient when compared to the original bridge model.
Go to article

Authors and Affiliations

Michael Reiterer
Markus J. Hochrainer

This page uses 'cookies'. Learn more