Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 15
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this work we report simulation and experimental results for an MWIR HgCdTe photodetector designed by computer simulation and fabricated in a joint laboratory run by VIGO Sytems S.A. and Military University of Technology. The device is based on a modified N+pP+ heterostructure grown on 2”., epiready, semi-insulating (100) GaAs substrates in a horizontal MOCVD AIX 200 reactor.

The devices were examined by measurements of spectral and time responses as a function of a bias voltage and operating temperatures. The time response was measured with an Optical Parametric Oscillator (OPO) as the source of ~25 ps pulses of infrared radiation, tuneable in a 1.55–16 μm spectral range. Two-stage Peltier cooled devices (230 K) with a 4.1 μm cut-off wavelength were characterized by 1.6 × 1012 cm Hz1/2/W peak detectivity and < 1 ns time constant for V > 500 mV.

Go to article

Authors and Affiliations

Kacper Grodecki
Piotr Martyniuk
Małgorzata Kopytko
Andrzej Kowalewski
Dawid Stępień
Artur Kębłowski
Adam Piotrowski
Józef Piotrowski
Waldemar Gawron
Antoni Rogalski
Download PDF Download RIS Download Bibtex

Abstract

The review includes results of analyses and research aimed at standardizing the concepts and measurement procedures associated with photodetector parameters. Photodetectors are key components that ensure the conversion of incoming optical radiation into an electrical signal in a wide variety of sophisticated optoelectronic systems and everyday devices, such as smartwatches and systems that measure the composition of the Martian atmosphere. Semiconductor detectors are presented, and they play a major role due to their excellent optical and electrical parameters as well as physical parameters, stability, and long mean time to failure. As their performance depends on the manufacturing technology and internal architecture, different types of photodetectors are described first. The following parts of the article concern metrological aspects related to their characterization. All the basic parameters have been defined, which are useful both for their users and their developers. This allows for the verification of photodetectors’ workmanship quality, the capabilities of a given technology, and, above all, suitability for a specific application and the performance of the final optoelectronic system. Experimentally validated meteorological models and equivalent diagrams, which are necessary for the correct analysis of parameter measurements, are also presented. The current state of knowledge presented in recognized scientific papers and the results of the authors’ works are described as well.
Go to article

Authors and Affiliations

Zbigniew Bielecki
1
ORCID: ORCID
Krzysztof Achtenberg
1
ORCID: ORCID
Małgorzata Kopytko
2
ORCID: ORCID
Janusz Mikołajczyk
1
ORCID: ORCID
Jacek Wojtas
1
ORCID: ORCID
Antoni Rogalski
2
ORCID: ORCID

  1. Institute of Optoelectronics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
  2. Institute of Applied Physics, Military University of Technology, 2 Kaliskiego Str., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The authors report the characteristics of a diffraction-grating-free mid-wavelength infrared InP/In0.85Ga0.15As quantum well infrared photodetector focal plane array with a 640 × 512 format and a 15 m pitch. Combination of a normal incident radiation sensing ability of the high-x InxGa1-xAs quantum wells with a large gain property of the InP barriers led to a diffraction-grating-free quantum well infrared photodetector focal plane array with characteristics displaying great promise to keep the status of the quantum well infrared photodetector as a robust member of the new generation thermal imaging sensor family. The focal plane array exhibited excellent uniformity with noise equivalent temperature difference nonuniformity as low as 10% and a mean noise equivalent temperature difference below 20 mK with f/2 optics at 78 K in the absence of grating. Elimination of the diffraction-grating and large enough conversion efficiency (as high as 70% at a −3.5 V bias voltage) abolish the bottlenecks of the quantum well infrared photodetector technology for the new generation very small-pitch focal plane arrays.
Go to article

Authors and Affiliations

Cengiz Besikci
1 2
ORCID: ORCID
Saadettin V. Balcı
1
ORCID: ORCID
Onur Tanış
2
Oğuz O. Güngör
2
ORCID: ORCID
Esra S. Arpaguş
2

  1. Micro and Nanotechnology Program, Graduate School of Natural and Applied Sciences, Middle East Technical University, Dumlupınar Bulvarı 1, 06800 Ankara, Turkey
  2. Electrical and Electronics Engineering Department, Middle East Technical University, Dumlupınar Bulvarı 1, 06800 Ankara, Turkey
Download PDF Download RIS Download Bibtex

Abstract

Analysis is performed of the contemporary views on the effect of ion etching (ion-beam milling and reactive ion etching) on physical properties of HgCdTe and on the mechanisms of the processes responsible for modification of these properties under the etching. Possibilities are discussed that ion etching opens for defect studies in HgCdTe, including detecting electrically neutral tellurium nanocomplexes, determining background donor concentration in the material of various origins, and understanding the mechanism of arsenic incorporation in molecular-beam epitaxy-grown films.

Go to article

Authors and Affiliations

I.I. Izhnin
K.D. Mynbaev
A.V. Voitsekhovskii
A.G. Korotaev
O.I. Fitsych
M. Pociask-Bialy
Download PDF Download RIS Download Bibtex

Abstract

We review recently proposed concepts of infrared and terahertz photodetectors based on graphene van der Waals heterostructures and HgTe-CdHgTe quantum well heterostructures and demonstrate their potential.

Go to article

Authors and Affiliations

M. Ryzhii
T. Otsuji
V. Ryzhii
V. Aleshkin
A. Dubinov
V.E. Karasik
V. Leiman
V. Mitin
M.S. Shur
Download PDF Download RIS Download Bibtex

Abstract

In the last decade several papers have announced usefulness of two-dimensional materials for high operating temperature photodetectors covering long wavelength infrared spectral region. Transition metal dichalcogenide photodetectors, such as PdSe 2/MoS 2 and WS 2/HfS 2 and WS 2/HfS 2 heterojunctions, have been shown to achieve record detectivities at room temperature (higher than HgCdTe photodiodes). Under these circumstances, it is reasonable to consider the advantages and disadvantages of two-dimensional materials for infrared detection. This review attempts to answer the question thus posed.
Go to article

Bibliography

  1. Rogalski, A. 2D Materials for Infrared and Terahertz Detectors. (CRC Press, Boca Raton, 2020).
  2. Rogalski, A. Infrared and Terahertz Detectors. (CRC Press, Boca Raton, 2019).
  3. Rogalski, A. Quantum well photoconductors in infrared detector technology. Appl. Phys. 93, 4355–4391 (2003). https://doi.org/10.1063/1.1558224
  4. Kinch, M. A. State-of-the-Art Infrared Detector Technology. (SPIE Press, Bellingham, 2014).
  5. Rogalski, A., Martyniuk P. & Kopytko, M. Challenges of small-pixel infrared detectors: a review. Prog. Phys. 79, 046501-1–42 (2016). https://doi.org/10.1088/0034-4885/79/4/046501
  6. Rogalski, A., Martyniuk, P., Kopytko, M. & Hu, W. Trends in performance limits of the HOT infrared photodetectors. Sci. 11, 501 (2021). https://doi.org/10.3390/app11020501
  7. Piotrowski J. & Rogalski, A. Comment on “Temperature limits on infrared detectivities of InAs/InxGa1–xSb superlattices and bulk Hg1–xCdxTe” [J. Appl. Phys. 74, 4774 (1993)]. Appl. Phys. 80, 2542–2544 (1996). https://doi.org/10.1063/1.363043
  8. Robinson, J., Kinch, M., Marquis, M., Littlejohn, D. & Jeppson, K. Case for small pixels: system perspective and FPA challenge. SPIE 9100, 91000I-1–10 (2014). https://doi.org/10.1117/12.2054452
  9. Holst  C. & Lomheim, T. C. CMOS/CCD Sensors and Camera Systems. (JCD Publishing and SPIE Press, Winter Park, 2007).
  10. Holst, G. C. & Driggers, R. G. Small detectors in infrared system design. Eng. 51, 096401-1–10 (2012).
  11. Boreman, G. D. Modulation Transfer Function in Optical and Electro-Optical Systems. (2nd edition) (SPIE Press, Bellingham, 2021).
  12. Higgins, W. M., Seiler, G. N., Roy, R. G. & Lancaster, R. A. Standard relationships in the properties of Hg1–xCdx J. Vac. Sci. Technol. A 7, 271–275 (1989). https://doi.org/10.1116/1.576110
  13. Chu, J. H., Li, B., Liu, K. & Tang, D. Empirical rule of intrinsic absorption spectroscopy in Hg1−xCd x J. Appl. Phys. 75, 1234 (1994). https://doi.org/10.1063/1.356464
  14. Jariwala, D., Davoyan, A. R., Wong, J. & Atwater, H. A. Van der Waals materials for atomically-thin photovoltaics: promise and outlook. ACS Photonics 4, 2962−2970 (2017). https://doi.org/10.1021/acsphotonics.7b01103
  15. Kinch, M. A. et al. Minority carrier lifetime in p-HgCdTe. Electron. Mater. 34, 880–884 (2005). https://doi.org/10.1007/s11664-005-0036-2
  16. Lee, D. et al. Law 19: the ultimate photodiode performance metric. SPIE 11407, 114070X (2020). https://doi.org/10.1117/12.2564902
  17. Yang, Z., Dou, J. & Wang, M. Graphene, Transition Metal Dichalcogenides, and Perovskite Photodetectors. in Two-Dimensional Materials for Photodetector (ed. Nayak, P. K.) 1–20 (IntechOpen, 2018). http://doi.org/10.5772/intechopen.74021
  18. Pi, L., Li, L., Liu, K., Zhang, Q. Li, H. & Zhai, T. Recent progress on 2D noble-transition-metal Adv. Funct. Mater. 29, 1904932 (2019). https://doi.org/10.1002/adfm.201904932
  19. Vargas-Bernal, R. Graphene Against Other Two-Dimensional Materials: A Comparative Study on the Basis of Photonic Applications. in Graphene Materials (eds. Kyzas, G. Z. & Mitropoulos, A. Ch.) 103–121 (IntechOpen, 2017). http://doi.org/10.5772/67807
  20. Rogalski, A., Martyniuk, P. & Kopytko, M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Quantum Electron. 68, 100228 (2019). https://doi.org/10.1016/j.pquantelec.2019.100228
  21. Delaunay, P. Y., Nosho, B. Z., Gurga, A. R., Terterian, S. & Rajavel,  D. Advances in III-V based dual-band MWIR/LWIR FPAs at HRL. Proc. SPIE 10177, 101770T-1–12 (2017). https://doi.org/10.1117/12.2266278
  22. Lawson, W. D., Nielson, S., Putley, E. H. & Young, A. S. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. Phys. Chem. Solids 9, 325–329 (1959). https://doi.org/10.1016/0022-3697(59)90110-6
  23. Lee, D. et al. Law 19 – The Ultimate Photodiode Performance Metric. in Extended Abstracts. The 2019 U.S. Workshop on the Physics and Chemistry of II-VI Materials 13–15 (2019).
  24. Rogalski, A., Kopytko, M., Martyniuk, P. & Hu, W. Comparison of performance limits of HOT HgCdTe photodiodes with 2D material infrared photodetectors. Opto-Electron. Rev. 28, 82–92 (2020). https://doi.org/10.24425/opelre.2020.132504
  25. Tennant, W. E., Lee, D., Zandian, M., Piquette, E. & Carmody, M. MBE HgCdTe technology: A very general solution to IR detection, described by ‘Rule 07’, a very convenient heuristic. Electron. Mater. 37, 1406–1410 (2008). https://doi.org/10.1007/s11664-008-0426-3
  26. Long, M. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Adv. 3, e1700589 (2017). https://doi.org/10.1126/sciadv.1700589
  27. Du, S. et al. A broadband fluorographene photodetector. Mater. 29, 1700463 (2017). https://doi.org/10.1002/adma.201700463
  28. Long, M. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13, 2511−2519 (2019). https://doi.org/10.1021/acsnano.8b09476
  29. Chen, Y. Unipolar barrier photodetectors based on van der Waals heterostructures. Electron. 4, 357–363 (2021). https://doi.org/10.1038/s41928-021-00586-w
  30. Amani, M., Regan, E., Bullock, J., Ahn, G. H. & Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 11, 11724–11731 (2017). https://doi.org/10.1021/acsnano.7b07028
  31. Lukman, S. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 15, 675–682 (2020). https://org/10.1038/s41565-020-0717-2
  32. VIGO System Catalog 2018/2019. VIGO System S.A. https://vigo.com.pl/wp-content/uploads/2017/06/VIGO-Catalogue.pdf (2018).
  33. Mercury Cadmium Telluride Detectors. Teledyne Judson Techno-logies LLC http://www.teledynejudson.com/prods/Documents/MCT_shortform_Dec2002.pdf (2002).
  34. Zhong, F. et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization Nano Res. 14, 1840–1862 (2021). https://doi.org/10.1007/s12274-020-3247-1
  35. Huang, et al. Waveguide integrated black phosphorus photo-detector for mid-infrared applications. ACS Nano 13, 913–921 (2019). https://doi.org/10.1021/acsnano.8b08758
  36. Bullock, J. et al. Polarization-resolved black phosphorus/ molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Photonics 12, 601–607 (2018). https://doi.org/10.1038/s41566-018-0239-8
  37. Yu, X. et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Commun. 9, 1545 (2018). https://doi.org/10.1038/s41467-018-03935-0
  38. Yu, X. et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Commun. 9, 4299 (2018). https://doi.org/10.1038/s41467-018-06776-z
  39. Long, M., Wang, P., Fang, H. & Hu. W. Progress, challenges, and opportunities for 2D material-based photodetectors. Funct. Mater. 1803807 (2018). https://doi.org/10.1002/adfm.201803807
  40. Wang, P. et al. Arrayed van der Waals broadband detectors for dual-band detection. Mater. 29, 1604439 (2017). https://doi.org/10.1002/adma.201604439
  41. Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Photonics 11, 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
  42. Konstantatos, G. et al. Hybrid graphene-quantum dot photo-transistors with ultrahigh gain. Nanotechnol. 7, 363–368 (2012). https://doi.org/10.1038/nnano.2012.60
  43. Phillips, J. Evaluation of the fundamental properties of quantum dot infrared detectors. J. Appl. Phys. 91, 4590–4594 (2002). https://doi.org/10.1063/1.1455130
  44. Jerram P. & Beletic, J. Teledyne’s high performance infrared detectors for space missions. SPIE 11180, 111803D-2 (2018). https://doi.org/10.1117/12.2536040
  45. Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductor. Rev. 44, 3691–3718 2015. https://doi.org/10.1039/C5CS00106D
  46. Wang, J. et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 13, 1700894 (2017). https://doi.org/10.1002/smll.201700894
  47. An, J. et al. Research development of 2D materials-based photodetectors towards mid-infrared regime. Nano Select 2, 527 (2021). https://doi.org/10.1002/nano.202000237
  48. Wu, D. et al. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. Mater. Chem. A 8, 3632–3642 (2020). https://doi.org/10.1039/C9TA13611H
  49. Zeng, L.-H. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Funct. Mater. 29, 1806878 (2019). https://doi.org/10.1002/adfm.201806878
  50. Imec shows excellent performance in ultra-scaled FETs with 2D-material channel. Imec. https://www.imec-int.com/en/articles/imec-shows-excellent-performance-in-ultra-scaled-fets-with-2d-material-channel (2019).
  51. Scaling Up Large-area Integration of 2D Materials. Compound Semiconductor. https://compoundsemiconductor.net/article/112712/Scaling_Up_Large-area_Integration_Of_2D_Materials (2021).
  52. Briggs, N. et al. A roadmap for electronic grade 2D materials. 2D Mater. 6, 022001 (2019). https://doi.org/10.1088/2053-1583/aaf836
  53. IRDS International Roadmap for Devices and SystemsTM 2018 Update. IEEE. https://irds.ieee.org/images/files/pdf/2018/2018IRDS
    _MM.pdf
    (2018).
Go to article

Authors and Affiliations

Antoni Rogalski
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this work, the authors investigated the influence of proton-irradiation on the dark current of XBp longwave infrared InAs/GaSb type-II superlattice barrier detectors, showing a cut-off wavelength from 11 µm to 13 µm at 80 K. The proton irradiations were performed with 63 MeV protons and fluences up to 8∙1011 H+/cm² on a type-II superlattice detector kept at cryogenic (100 K) or room temperature (300 K). The irradiation temperature of the detector is a key parameter influencing the effects of proton irradiation. The dark current density increases due to displacement damage dose effects and this increase is more important when the detector is proton-irradiated at room temperature rather than at cryogenic temperature.
Go to article

Authors and Affiliations

Clara Bataillon
1
Jean-Phillipe Perez
1
Rodolphe Alchaar
1
Alain Michez
1
Olivier Gilard
2
Olivier Saint-Pé
3
Philippe Christol
1

  1. University of Montpellier, 163 Auguste Broussonnet St., 34090 Montpellier, France
  2. CNES, 18 Edouard Belin Ave., 31400 Toulouse, France
  3. Airbus Defense & Space, 31 des Cosmonautes St., 31400 Toulouse, France
Download PDF Download RIS Download Bibtex

Abstract

In the past ten years, InAs/InAsSb type-II superlattice has emerged as a promising technology for high-temperature mid-wave infrared photodetector. Nevertheless, transport properties are still poorly understood in this type of material. In this paper, optical and electro-optical measurements have been realised on InAs/InAsSb type-II superlattice mid-wave infrared photodetectors. Quantum efficiency of 50% is measured at 150 K, on the front side illumination and simple pass configuration. Absorption measurement, as well as lifetime measurement are used to theoretically calculate the quantum efficiency thanks to Hovel’s equation. Diffusion length values have been extracted from this model ranging from 1.55 µm at 90 K to 7.44 µm at 200 K. Hole mobility values, deduced from both diffusion length and lifetime measurements, varied from 3.64 cm²/Vs at 90 K to 37.7 cm²/Vs at 200 K. The authors then discuss the hole diffusion length and mobility variations within temperature and try to identify the intrinsic transport mechanisms involved in the superlattice structure.
Go to article

Authors and Affiliations

Maxime Bouschet
1 2
Vignesh Arounassalame
3
Anthony Ramiandrasoa
3
Jean-Philippe Perez
1
Nicolas Péré-Laperne
2
Isabelle Ribet-Mohamed
3
Philippe Christol
1

  1. IES, Université de Montpellier, CNRS, 860 Saint Priest St., F-34000 Montpellier, CEDEX 5, France
  2. LYNRED, BP 21, 364 de Valence Ave., 38113 Veurey-Voroize, France
  3. ONERA, Chemin de la Hunière, F-91761 Palaiseau Cedex, France
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we present the electrical and electro-optical characterizations of an InAs/GaSb type-2 superlattice barrier photodetector operating in the full longwave infrared spectral domain. The fabricated detectors exhibited a 50% cut-off wavelength around 14 μm at 80 K and a quantum efficiency slightly above 20%. The dark current density was of 4.6 × 10 2 A/cm2 at 80 K and a minority carrier lateral diffusion was evaluated through dark current measurements on different detector sizes. In addition, detector spectral response, its dark current-voltage characteristics and capacitance-voltage curve accompanied by electric field simulations were analyzed in order to determine the operating bias and the dark current regimes at different biases. Finally, dark current simulations were also performed to estimate a minority carrier lifetime by comparing experimental curves with simulated ones.

Go to article

Authors and Affiliations

R. Alchaar
J. B. Rodriguez
L. Höglund
S. Naureen
E. Costard
P. Christol
Download PDF Download RIS Download Bibtex

Abstract

Graphene applications in electronic and optoelectronic devices have been thoroughly and intensively studied since graphene discovery. Thanks to the exceptional electronic and optical properties of graphene and other two-dimensional (2D) materials, they can become promising candidates for infrared and terahertz photodetectors.

Quantity of the published papers devoted to 2D materials as sensors is huge. However, authors of these papers address them mainly to researches involved in investigations of 2D materials. In the present paper this topic is treated comprehensively with including both theoretical estimations and many experimental data.

At the beginning fundamental properties and performance of graphene-based, as well as alternative 2D materials have been shortly described. Next, the position of 2D material detectors is considered in confrontation with the present stage of infrared and terahertz detectors offered on global market. A new benchmark, so-called “Law 19”, used for prediction of background limited HgCdTe photodiodes operated at near room temperature, is introduced. This law is next treated as the reference for alternative 2D material technologies. The performance comparison concerns the detector responsivity, detectivity and response time. Place of 2D material-based detectors in the near future in a wide infrared detector family is predicted in the final conclusions.

Go to article

Authors and Affiliations

A. Rogalski
Małgorzata Kopytko
ORCID: ORCID
Piotr Martyniuk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

In this study, the temperature influence on the spectral responsivity of a Light Emitting Diode (LED) used as a photoreceptor, combined to light source spectrum is correlated to electrical characteristics in order to propose an alternative method to estimate LED junction temperature, regardless of the absolute illumination intensity and based on the direct correlation between the integral of the product of two optical spectra and the photo-generated currents. A laboratory test bench for experimental optical measurements has been set in order to enable any characterizing of photoelectric devices in terms of spectral behaviour, in a wavelength range placed between 400–1000 nm, and of current-voltage characteristics as function of temperature by using two different illumination sources. The temperature is analysed in a range from 5°C up to 85°C, so as to evaluate thermal variation effects on the sensor performance. The photo-generated current of two LEDs with different peak wavelengths has been studied. Research has observed and mathematically analysed what follows: since the photo-generated current strictly depends on the combination between the spectral response of the photoreceptor and the lighting source response, it becomes possible to estimate indirectly the junction temperature of the LEDs by considering the ratio between the photogenerated currents obtained by using two different illumination sources. Such results may for one thing increase knowledge in the fields where LEDs are used as photo-detectors for many applications and for another, they could be extended to generic photodetectors, thus providing useful information in photovoltaic field, for instance.

Go to article

Authors and Affiliations

E. Vannacci
S. Granchi
M. Cecchi
M. Calzolai
E. Mazzi
E. Biagi
Download PDF Download RIS Download Bibtex

Abstract

Ga-free InAs/InAsSb type-II superlattice structures grown on GaSb substrates have demonstrated high performance for mid-wave infrared applications. However, realisation of long wavelength infrared photodetectors based on this material system still presents challenges, especially in terms of reduced quantum efficiency. This reduction is due, in part, to the increased type-II superlattice period required to attain longer wavelengths, as thicker periods decrease the wave-function overlap for the spatially separated quantum wells. One way to improve long wavelength infrared performance is to modify the type-II superlattice designs with a shorter superlattice period for a given wavelength, thereby increasing the wave-function overlap and the resulting optical absorption. Long wavelength infrared epitaxial structures with reduced periods have been realised by shifting the lattice constant of the type-II superlattice from GaSb to AlSb. Alternatively, epitaxial growth on substrates with orientations different than the traditional (100) surface presents another way for superlattice period reduction. In this work, the authors evaluate the performance of long wavelength infrared type-II superlattice detectors grown by molecular beam epitaxy using two different approaches to reduce the superlattice period: first, a metamorphic buffer to target the AlSb lattice parameter, and second, structures lattices matched to GaSb using substrates with different orientations. The use of the metamorphic buffer enabled a ~30% reduction in the superlattice period compared to reference baseline structures, maintaining a high quantum efficiency, but with the elevated dark current related to defects generated in the metamorphic buffer. Red-shift in a cut-off wavelength obtained from growths on high-index substrates offers a potential path to improve the infrared photodetector characteristics. Focal plane arrays were fabricated on (100), (311)A- and (211)B-oriented structures to compare the performance of each approach.
Go to article

Authors and Affiliations

Dmitri Lubyshev
1
Joel M. Fastenau
1
Michael Kattner
1
Philip Frey
1
Scott A. Nelson
1
Ryan Flick
1
Ying Wu
1
Amy W. K. Liu
1
Dennis E. Szymanski
1
Becky Martinez
2
Mark J. Furlong
2
Richard Dennis
3
Jason Bundas
3
Mani Sundaram
3

  1. IQE, Inc., 119 Technology Dr., Bethlehem, PA 18015, USA
  2. IQE, Pascal Close, St. Mellons, Cardiff, CF3 0LW, UK
  3. QmagiQ, LCC, 22 Cotton Rd., Unit H, Suite 180, Nashua, NH 03063, USA
Download PDF Download RIS Download Bibtex

Abstract

The semiempirical rule, “Rule 07” specified in 2007 for P-on-n HgCdTe photodiodes has become widely popular within infrared community as a reference for other technologies, notably for III-V barrier photodetectors and type-II superlattice photodiodes. However, in the last decade in several papers it has been shown that the measured dark current density of HgCdTe photodiodes is considerably lower than predicted by benchmark Rule 07. Our theoretical estimates carried out in this paper support experimental data. Graphene and other 2D materials, due to their extraordinary and unusual electronic and optical properties, are promising candidates for high-operating temperature infrared photodetectors. In the paper their room-temperature performance is compared with that estimated for depleted P i-N HgCdTe photodiodes. Two important conclusions result from our considerations: the first one, the performance of 2D materials is lower in comparison with traditional detectors existing on global market (InGaAs, HgCdTe and type- II superlattices), and the second one, the presented estimates provide further encouragement for achieving low-cost and high performance HgCdTe focal plane arrays operating in high-operating temperature conditions.

Go to article

Authors and Affiliations

A. Rogalski
Małgorzata Kopytko
ORCID: ORCID
Piotr Martyniuk
ORCID: ORCID
W. Hu
Download PDF Download RIS Download Bibtex

Abstract

In the past decade, there has been significant progress in development of the colloidal quantum dot (CQD) photodetectors. The QCD’s potential advantages include: cheap and easy fabrications, size-tuneable across wide infrared spectral region, and direct coating on silicon electronics for imaging, which potentially reduces array cost and offers new modifications like flexible infrared detectors. The performance of CQD high operating temperature (HOT) photodetectors is lower in comparison with detectors traditionally available on the global market (InGaAs, HgCdTe and type-II superlattices). In several papers their performance is compared with the semiempirical rule, “Rule 07” (specified in 2007) for P-on-n HgCdTe photodiodes. However, at present stage of technology, the fully-depleted background limited HgCdTe photodiodes can achieve the level of room-temperature dark current considerably lower than predicted by Rule 07. In this paper, the performance of HOT CQD photodetectors is compared with that predicted for depleted P-i-N HgCdTe photodiodes. Theoretical estimations are collated with experimental data for both HgCdTe photodiodes and CQD detectors. The presented estimates provide further encouragement for achieving low-cost and high performance MWIR and LWIR HgCdTe focal plane arrays operating in HOT conditions.

Go to article

Authors and Affiliations

A. Rogalski
Małgorzata Kopytko
ORCID: ORCID
Piotr Martyniuk
ORCID: ORCID
W. Hu

This page uses 'cookies'. Learn more