Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper, of primary interest is to synthesis 8-(1H-indol-3-ylazo)-naphthalene-2-sulfonic acid (INSA) and to evaluate the main parameters of Au/INSA/n-Si/Al diode in dark and under illumination. Different techniques are used for interpreting the proposed INSA chemical structure. The dark current-voltage measurements were achieved in the temperature range of 293−413 K. It is noticed that INSA films modify the interfacial barrier height of classical Au/n-Si junction. At low applied voltages, the I–V relation shows exponential behavior. The values ideality factor, n, and the barrier height, φ, are improved by heating. The abnormal trend of n and φ is discussed, and a homogenous barrier height of 1.45 eV is evaluated. The series resistance is also calculated using Norde's function and it changes inversely with temperature. The space charge limited current ruled with exponential trap distribution dominates at relatively high potentials, trap concentration and carriers mobility are extracted. The reverse current of the diode has illumination intensity dependence with a good photosensitivity indicating that the device is promising for photodiode applications.

Go to article

Authors and Affiliations

I.T. Zedan
E.M. El-Menyawy
H.H. Nawar
Download PDF Download RIS Download Bibtex

Abstract

Germanium (Ge) PiN photodetectors are fabricated and electro-optically characterised. Unintentionally and p-type doped Ge layers are grown in a reduced-pressure chemical vapour deposition tool on a 200 mm diameter, <001>-oriented, p-type silicon (Si) substrates. Thanks to two Ge growth temperatures and the use of short thermal cycling afterwards, threading dislocation densities down to 107 cm−2 are obtained. Instead of phosphorous (P) ion implantation in germanium, the authors use in situ phosphorous-doped poly-crystalline Si (poly-Si) in the n-type regions. Secondary ion mass spectrometry revealed that P was confined in poly-Si and did not diffuse in Ge layers beneath. Over a wide range of tested device geometries, production yield was dramatically increased, with almost no short circuits. At 30 °C and at −0.1 V bias, corresponding to the highest dynamic resistance, the median dark current of 10 µm diameter photodiodes is in the 5–20 nA range depending on the size of the n-type region. The dark current is limited by the Shockley-Read-Hall generation and the noise power spectral density of the current by the flicker noise contribution. A responsivity of 0.55 and 0.33 A/W at 1.31 and 1.55 µm, respectively, is demonstrated with a 1.8 µm thick absorption Ge layer and an optimized anti-reflection coating at 1.55 µm. These results pave the way for a cost-effective technology based on group-IV semiconductors.
Go to article

Authors and Affiliations

Quentin Durlin
1
Abdelkader Aliane
1
Luc André
1
Hacile Kaya
1
Mélanie Le Cocq
1
Valérie Goudon
1
Claire Vialle
1
Marc Veillerot
1
Jean-Michel Hartmann
1

  1. Univ. Grenoble Alpes, CEA-Leti, F-38000 Grenoble, France
Download PDF Download RIS Download Bibtex

Abstract

The operation of narrow-gap semiconductor devices under non-equilibrium mode is used at temperatures where the materials are normally intrinsic. The phenomenon of minority carrier exclusion and extraction was particularly discussed in the case of the suppression of Auger thermal generation in heterojunction photodiodes, especially important in the long-wave infrared range. This paper shows that the reduction of the dark current in the HgCdTe photodiode operating in the mid-wave infrared range is primarily the result of suppression of the Shockley-Read-Hall generation in the non-equilibrium absorber. Under a reverse bias, the majority carrier concentration is held equal to the majority carrier doping level. This effect also leads to a decreased majority carrier population at the trap level and an effective increase in the carrier lifetime. The analysed device was with the following design: p+-Bp cap-barrier unit, p-type absorber doped at the level of 8 ·1015 cm−3, and wide-bandgap N+ bottom contact layer. At room temperature, the lowest dark current density of 3.12 ·10−1 A/cm2 was consistent with the theoretically predicted Shockley-Read-Hall suppression mechanism, about two times smaller than for the equilibrium case.
Go to article

Authors and Affiliations

Małgorzata Kopytko
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00 908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a design and performance analysis of a photosensor device enabling the measurement of the visible light illuminance. The sensor is designed for use in the light metering matrix of a mobile measurement platform allowing the correct operation of in-pavement airport lamps. This kind of control can be required by regulations and must meet the standards defined by the European Union Aviation Safety Agency (EASA). An important assumption of the solution was to obtain the highest possible speed of a measurement acquisition so that the control process would take place in a relatively short time. The proposed module concept is dedicated to the task of testing the quality of airport lamps, due to the characteristics of the photosensitive elements matching the light beams emitted by luminaries. The device is based on a VTP1220FBH photodiode and an ATmega328P microcontroller, which, in addition to the analogue-to-digital conversion and correction, sends the results back to the master unit via the I 2C bus.
Go to article

Bibliography

  1. Certification Specifications (CS) and Guideline Material (GM) for Aerodrome Design Edition 3, Annex to Decision No. 2016/027/Rof the EASA Executive Director, European Aviation Safety Agency. https://www.easa.europa.eu/en/downloads/21730/en (2016).
  2. Suder, J., Maciejewski, P., Podbucki, K., Marciniak, T. & Dąbrowski, A. Platforma pomiarowa do badania jakości działania lamp lotniskowych (Measuring platform fo quality testing of airport lamps). Pomiary Automatyka Robotyka PAR 23, 5–13 (2019). https://doi.org/10.14313/PAR_232/5 (in Polish)
  3. Podbucki, K., Suder, J., Marciniak, T. & Dąbrowski, A. Elektro-niczna matryca pomiarowa do badania lamp lotniskowych (Electronic measuring matrix for testing airport lamps). Przegląd Elektrotechniczny 97, 47–51 (2021). https://doi.org/10.15199/48.2021.02.12 (in Polish)
  4. Suder, J., Podbucki, K., Marciniak, T. & Dąbrowski, A. Spectrum sensors for detecting type of airport lamps in a light photometry system. Opto-Electron. Rev. 29, 133–140 (2021). https://doi.org/10.24425/opelre.2021.139383
  5. Suder, J., Podbucki, K., Marciniak, T. & Dąbrowski, A. Low complexity lane detection methods for light photometry system. Electronics 10, 1665 (2021). https://doi.org/10.3390/electronics10141665
  6. BH1750 Digital 16bit Serial Output Type Ambient Light Sensor IC Technical Note. https://www.mouser.com/datasheet/2/348/bh1750fvi-e-186247.pdf (2011).
  7. Krac, E. & Górecki, K. Wpływ kąta padania światła na wartości natężenia oświetlenia zmierzone za pomocą czujników fotometry-cznych (Influence of the angle of incidence of light on the values of illuminance measureg with photodetectors). Przegląd Elektro-techniczny 97, 214–217 (2021). https://doi.org/10.15199/48.2021.12.44 (in Polish)
  8. Sitompul, D. D., Surya, F. E., Suhandi, F. P. & Zakaria, H. Runway Edge Light Photometry System by Using Drone-Mounted Instrument. in International Symposium on Electronics and Smart Devices (ISESD) 1–5 (2019). https://doi.org/10.1109/ISESD.2019.8909498
  9. Sitompul, D. S. D., Surya, F. E., Suhandi, F. P. & Zakaria H. Horizontal Scanning Method by Drone Mounted Photodiode Array for Runway Edge Light Photometry. in International Seminar on Intelligent Technology and Its Applications (ISITIA) 41–45 (2019). https://doi.org/10.1109/ISITIA.2019.8937211
  10. Gao, J., Luo, J., Xu, A. & Yu, J. Light Intensity Intelligent Control System Research snd Design Based on Automobile Sun Visor of BH1750. in 29th Chinese Control And Decision Conference (CCDC) 3957–3960 (2017). https://doi.org/10.1109/CCDC.2017.7979192
  11. Grove – Light Sensor v1.2. Seeed Development Limited https://seeeddoc.github.io/Grove-Light_Sensor_v1.2/ (2016).
  12. BPW21TO39 Ambient Light Sensor Datasheet. ams-OSRAM AG https://dammedia.osram.info/media/resource/hires/osram-dam-5984961/BPW%2021_EN.pdf (2022).
  13. Ptak, P., Górecki, K. & Gensikowski, M. Porównanie właściwości dynamicznych wybranych czujników fotometrycznych (Compa-rison of dynamic properties of the selected photometric sensors). Przegląd Elektrotechniczny 96, 112–116 (2020). https://doi.org/10.15199/48.2020.12.21 (in Polish)
  14. Ambient Light Sensors VTP1220FBH Product Description. Exelitas https://www.tme.eu/Document/99fa8b97bc9fac9fd65b9c88e771e8d1/2.pdf (2022).
  15. Raes, W., Bastiaens, S., Plets, D. & Stevens, N. Assessment of the Influence of Photodiode Size on RSS-Based Visible Light Positioning Precision. IEEE SENSORS 1–3 (2019). https://doi.org/10.1109/SENSORS43011.2019.8956543
  16. Hudzikowski, A. Luksomierz kit 2974 AVT. Elektronika dla wszystkich EDW 03/11, 56–58, 2011. https://serwis.avt.pl/manuals/AVT2974.pdf (in Polish)
  17. Mańczak, W. Development of a microprocessor matrix to measure the lightning intensity of airport lamps. (Poznan University of Technology, 2022).
  18. Alferink, F. Fast Lux-meter: Electronic Measurements. Meettech-niek.info. https://meettechniek.info/diy-instruments/lux-meter.html (2013).
Go to article

Authors and Affiliations

Kacper Podbucki
1
ORCID: ORCID
Jakub Suder
1
ORCID: ORCID
Tomasz Marciniak
1
ORCID: ORCID
Wojciech Mańczak
2
ORCID: ORCID
Adam Dąbrowski
1
ORCID: ORCID

  1. Division of Signal Processing and Electronic Systems, Institute of Automatic Control and Robotics, Poznan University of Technology, 5 M. Skłodowska-Curie Sq., 60-965 Poznań, Poland
  2. Faculty of Computing and Telecommunications, Poznan University of Technology, 5 M. Skłodowska-Curie Sq., 60-965 Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

The semiempirical rule, “Rule 07” specified in 2007 for P-on-n HgCdTe photodiodes has become widely popular within infrared community as a reference for other technologies, notably for III-V barrier photodetectors and type-II superlattice photodiodes. However, in the last decade in several papers it has been shown that the measured dark current density of HgCdTe photodiodes is considerably lower than predicted by benchmark Rule 07. Our theoretical estimates carried out in this paper support experimental data. Graphene and other 2D materials, due to their extraordinary and unusual electronic and optical properties, are promising candidates for high-operating temperature infrared photodetectors. In the paper their room-temperature performance is compared with that estimated for depleted P i-N HgCdTe photodiodes. Two important conclusions result from our considerations: the first one, the performance of 2D materials is lower in comparison with traditional detectors existing on global market (InGaAs, HgCdTe and type- II superlattices), and the second one, the presented estimates provide further encouragement for achieving low-cost and high performance HgCdTe focal plane arrays operating in high-operating temperature conditions.

Go to article

Authors and Affiliations

A. Rogalski
Małgorzata Kopytko
ORCID: ORCID
Piotr Martyniuk
ORCID: ORCID
W. Hu
Download PDF Download RIS Download Bibtex

Abstract

In the past decade, there has been significant progress in development of the colloidal quantum dot (CQD) photodetectors. The QCD’s potential advantages include: cheap and easy fabrications, size-tuneable across wide infrared spectral region, and direct coating on silicon electronics for imaging, which potentially reduces array cost and offers new modifications like flexible infrared detectors. The performance of CQD high operating temperature (HOT) photodetectors is lower in comparison with detectors traditionally available on the global market (InGaAs, HgCdTe and type-II superlattices). In several papers their performance is compared with the semiempirical rule, “Rule 07” (specified in 2007) for P-on-n HgCdTe photodiodes. However, at present stage of technology, the fully-depleted background limited HgCdTe photodiodes can achieve the level of room-temperature dark current considerably lower than predicted by Rule 07. In this paper, the performance of HOT CQD photodetectors is compared with that predicted for depleted P-i-N HgCdTe photodiodes. Theoretical estimations are collated with experimental data for both HgCdTe photodiodes and CQD detectors. The presented estimates provide further encouragement for achieving low-cost and high performance MWIR and LWIR HgCdTe focal plane arrays operating in HOT conditions.

Go to article

Authors and Affiliations

A. Rogalski
Małgorzata Kopytko
ORCID: ORCID
Piotr Martyniuk
ORCID: ORCID
W. Hu
Download PDF Download RIS Download Bibtex

Abstract

Graphene applications in electronic and optoelectronic devices have been thoroughly and intensively studied since graphene discovery. Thanks to the exceptional electronic and optical properties of graphene and other two-dimensional (2D) materials, they can become promising candidates for infrared and terahertz photodetectors.

Quantity of the published papers devoted to 2D materials as sensors is huge. However, authors of these papers address them mainly to researches involved in investigations of 2D materials. In the present paper this topic is treated comprehensively with including both theoretical estimations and many experimental data.

At the beginning fundamental properties and performance of graphene-based, as well as alternative 2D materials have been shortly described. Next, the position of 2D material detectors is considered in confrontation with the present stage of infrared and terahertz detectors offered on global market. A new benchmark, so-called “Law 19”, used for prediction of background limited HgCdTe photodiodes operated at near room temperature, is introduced. This law is next treated as the reference for alternative 2D material technologies. The performance comparison concerns the detector responsivity, detectivity and response time. Place of 2D material-based detectors in the near future in a wide infrared detector family is predicted in the final conclusions.

Go to article

Authors and Affiliations

A. Rogalski
Małgorzata Kopytko
ORCID: ORCID
Piotr Martyniuk
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the noise levels present at various points in the FOSREM type fiber optic seismograph. The main aim of this research was to discover magnitudes of noise, introduced by various components of the analog and optical circuits of the device. First, the noise present in the electronic circuit without any optics connected is measured. Further experiments show noise levels including the detector diode not illuminated and illuminated. Additional tests were carried out to prove the necessity of analog circuitry shielding. All measurements were repeated using three powering scenarios which investigated the influence of power supply selection on noise. The results show that the electronic components provide a sufficient margin for the use of an even more precise detector diode. The total noise density of the whole device is lower than 4⋅10−7 rad/(s√Hz). The use of a dedicated Insulating Power Converter as a power supply shows possible advantages, but further experiments should be conducted to provide explicit thermic confirmation of these gains.
Go to article

Bibliography

  1. Rajan, G. Optical Fiber Sensors: Advanced Techniques and Applications. (CRC press, 2017).
  2. Sabri, N., Aljunid, S. A., Salim, M. S., Ahmad, R. B. & Kamaruddin, R. Toward optical sensors: Review and applications. J. Phys.: Conf. Ser. 423, 012064 (2014). https://doi.org/10.1088/1742-6596/423/1/012064
  3. Lee, B. et al. Interferometric fiber optic sensors. Sensors 12(3), 2467-2486 (2012). https://doi.org/10.3390/s120302467
  4. Bao, X. & Chen, L. Recent progress in distributed fiber optic sensors. Sensors 12(7), 8601–8639 (2012). https://doi.org/10.3390/s120708601
  5. Liu, G., Han, M. & Hou, W. High-resolution and fast-response fiber-optic temperature sensor using silicon Fabry-Pérot cavity. Opt. Express 23(6), 7237–7247 (2015). https://doi.org/10.1364/OE.23.007237
  6. Campanella, C. E., Cuccovillo, A., Campanella, C., Yurt, A. & Passaro, V. Fibre Bragg grating based strain sensors: review of technology and applications. Sensors 18(9), 3115 (2018). https://doi.org/10.3390/s18093115
  7. Ramakrishnan, M., Rajan, G., Semenova, Y. & Farrell, G. Overview of fiber optic sensor technologies for strain/temperature sensing applications in composite materials. Sensors 16(1), 99 (2016), https://doi.org/10.3390/s16010099.
  8. Yu, Q. & Zhou, X. (2011) Pressure sensor based on the fiber-optic extrinsic Fabry-Perot interferometer. Photonic Sens. 1(1), 72–83 (2011). https://doi.org/10.1007/s13320-010-0017-9
  9. Chang, T. et al. Fiber optic interferometric seismometer with phase feedback control. Opt. Express 28(5), 6102–6122 (2020). https://doi.org/10.1364/OE.385703
  10. Budinski, V. & Donlagic, D. Fiber-optic sensors for measurements of torsion, twist and rotation: a review. Sensors 17(3), 443 (2017). https://doi.org/10.3390/s17030443
  11. Jaroszewicz, L. R., Kurzych, A., Krajewski, Z., Kowalski, J. K., Kowalski, H. A. & Teisseyre, K. P. Innovative Fibre-Optic Rotational Seismograph. in 7th International Symposium on Sensor Science Proceedings 15, 45 (2019). https://doi.org/10.3390/proceedings2019015045
  12. Lee, W. H. K., Celebi, M., Todorovska, M. & Igel, H. Introduction to the special issue on rotational seismology and engineering applications. Bull. Seismol. Soc. Am. 99, 945–957 (2009). https://doi.org/10.1785/0120080344
  13. Kurzych, A., Kowalski, J. K., Sakowicz, B., Krajewski, Z. & Jaroszewicz, L. R. The laboratory investigation of the innovative sensor for torsional effects in engineering structures’ monitoring. Opto-Electron. Rev. 24(3), 134–143 (2016). http://doi.org/10.1515/oere-2016-0017
  14. Kurzych, A., Jaroszewicz, L. R., Kowalski, J. K. & Sakowicz, B. Investigation of rotational motion in a reinforced concrete frame construction by a fiber optic gyroscope. Opto-Electron. Rev. 28(2), 69–73 (2020). https://doi.org/10.24425/opelre.2020.132503
  15. Bernauer, F. et al. Rotation, strain, and translation sensors performance tests with active seismic sources. Sensors 21(1), 264 (2021). https://doi.org/10.3390/s21010264
  16. Sagnac, G. The light ether demonstrated by the effect of the relativewind in ether into a uniform rotation interferometer. Acad. Sci. 95, 708–710 (1913).
  17. Post, E. J. Sagnac effect. Rev. Mod. Phys. 39, 475–493 (1967). https://doi.org/10.1103/RevModPhys.39.475
  18. Jaroszewicz, L. R., Kurzych, A., Krajewski, Z., Dudek, M., Kowalski, J. K. & Teisseyre, K. P. The fiber-optic rotational seismograph - laboratory tests and field application. Sensors 19(12), 2699 (2019). https://doi.org/10.3390/s19122699
  19. Lefevre, H. C., Martin, P., Morisse, J., Simonpietri, P., Vivenot, P. & Arditti, H. J. High-dynamic-range fiber gyro with all-digital signal processing. Proc. SPIE 1367, 72–80 (1991).
  20. LeFevre, H. C. The Fiber Optic Gyroscope. (2nd ed.) 154–196 (Artech House: Norwood, MA, 2008).
  21. Merlo, S., Norgia, M. & Donati, S. Fiber Gyroscope Principles. in Handbook of Fibre Optic Sensing Technology. (ed. Lopez, J. M.) 1–23 (2000).
  22. Bernauer, F., Wassermann, J. & Igel, H. Rotational sensors—A comparison of different sensor types. J. Seismol. 16, 595–602 (2012). https://doi.org/10.1007/s10950-012-9286-7
  23. Heinzel, G., Rüdiger, A. & Schilling, R. Spectrum and spectral density estimation by the Discrete Fourier transform (DFT), including a comprehensive list of window functions and some new at-top windows. https://holometer.fnal.gov/GH_FFT.pdf (2021).
  24. IEEE Standard Specification Format Guide and Test Procedure for Single-Axis Interferometric Fiber Optic Gyros. IEEE-SA Standards Board 952, (1997). https://doi.org/10.1109/IEEESTD.1998.86153
  25. Allan Variance: Noise Analysis for Gyroscopes. Application Note AN5087 Rev. 0.2/2015. Freescale Semiconductor Inc., Eindhoven, Niderlands, (2015).
  26. Konno K. & Ohmachi, T. Ground motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull. Seismol. Soc. Am. 88(1), 228-241 (1998).
Go to article

Authors and Affiliations

Sławomir Niespodziany
1
ORCID: ORCID
Anna T. Kurzych
2
ORCID: ORCID
Michał Dudek
2
ORCID: ORCID

  1. Institute of Heat Engineering, Warsaw University of Technology, 21/25 Nowowiejska St., Warsaw 00-665, Poland
  2. Institute of Technical Physics, Military University of Technology, 2 gen. S. Kaliskiego St., Warsaw 00-908, Poland
Download PDF Download RIS Download Bibtex

Abstract

The dual-band avalanche photodiode (APD) detector based on a HgCdTe material system was designed and analysed in detail numerically. A theoretical analysis of the two-colour APD intended for the mid wavelength infrared (MWIR) and long wavelength infrared (LWIR) ranges was conducted. The main purpose of the work was to indicate an approach to select APD structure parameters to achieve the best performance at high operating temperatures (HOT). The numerical simulations were performed by Crosslight numerical APSYS platform which is designed to simulate semiconductor optoelectronic devices. The current-voltage characteristics, current gain, and excess noise analysis at temperature T = 230 K vs. applied voltage for MWIR (U = 15 V) and LWIR (U = –6 V) ranges were performed. The influence of low and high doping in both active layers and barrier on the current gain and excess noise is shown. It was presented that an increase of the APD active layer doping leads to an increase in the photocurrent gain in the LWIR detector and a decrease in the MWIR device. The dark current and photocurrent gains were compared. Photocurrent gain is higher in both spectral ranges.
Go to article

Authors and Affiliations

Tetiana Manyk
1
ORCID: ORCID
Kinga Majkowycz
1
ORCID: ORCID
Jarosław Rutkowski
1
ORCID: ORCID
Piotr Martyniuk
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, gen. Sylwestra Kaliskiego 2, 00-908 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the last decade several papers have announced usefulness of two-dimensional materials for high operating temperature photodetectors covering long wavelength infrared spectral region. Transition metal dichalcogenide photodetectors, such as PdSe 2/MoS 2 and WS 2/HfS 2 and WS 2/HfS 2 heterojunctions, have been shown to achieve record detectivities at room temperature (higher than HgCdTe photodiodes). Under these circumstances, it is reasonable to consider the advantages and disadvantages of two-dimensional materials for infrared detection. This review attempts to answer the question thus posed.
Go to article

Bibliography

  1. Rogalski, A. 2D Materials for Infrared and Terahertz Detectors. (CRC Press, Boca Raton, 2020).
  2. Rogalski, A. Infrared and Terahertz Detectors. (CRC Press, Boca Raton, 2019).
  3. Rogalski, A. Quantum well photoconductors in infrared detector technology. Appl. Phys. 93, 4355–4391 (2003). https://doi.org/10.1063/1.1558224
  4. Kinch, M. A. State-of-the-Art Infrared Detector Technology. (SPIE Press, Bellingham, 2014).
  5. Rogalski, A., Martyniuk P. & Kopytko, M. Challenges of small-pixel infrared detectors: a review. Prog. Phys. 79, 046501-1–42 (2016). https://doi.org/10.1088/0034-4885/79/4/046501
  6. Rogalski, A., Martyniuk, P., Kopytko, M. & Hu, W. Trends in performance limits of the HOT infrared photodetectors. Sci. 11, 501 (2021). https://doi.org/10.3390/app11020501
  7. Piotrowski J. & Rogalski, A. Comment on “Temperature limits on infrared detectivities of InAs/InxGa1–xSb superlattices and bulk Hg1–xCdxTe” [J. Appl. Phys. 74, 4774 (1993)]. Appl. Phys. 80, 2542–2544 (1996). https://doi.org/10.1063/1.363043
  8. Robinson, J., Kinch, M., Marquis, M., Littlejohn, D. & Jeppson, K. Case for small pixels: system perspective and FPA challenge. SPIE 9100, 91000I-1–10 (2014). https://doi.org/10.1117/12.2054452
  9. Holst  C. & Lomheim, T. C. CMOS/CCD Sensors and Camera Systems. (JCD Publishing and SPIE Press, Winter Park, 2007).
  10. Holst, G. C. & Driggers, R. G. Small detectors in infrared system design. Eng. 51, 096401-1–10 (2012).
  11. Boreman, G. D. Modulation Transfer Function in Optical and Electro-Optical Systems. (2nd edition) (SPIE Press, Bellingham, 2021).
  12. Higgins, W. M., Seiler, G. N., Roy, R. G. & Lancaster, R. A. Standard relationships in the properties of Hg1–xCdx J. Vac. Sci. Technol. A 7, 271–275 (1989). https://doi.org/10.1116/1.576110
  13. Chu, J. H., Li, B., Liu, K. & Tang, D. Empirical rule of intrinsic absorption spectroscopy in Hg1−xCd x J. Appl. Phys. 75, 1234 (1994). https://doi.org/10.1063/1.356464
  14. Jariwala, D., Davoyan, A. R., Wong, J. & Atwater, H. A. Van der Waals materials for atomically-thin photovoltaics: promise and outlook. ACS Photonics 4, 2962−2970 (2017). https://doi.org/10.1021/acsphotonics.7b01103
  15. Kinch, M. A. et al. Minority carrier lifetime in p-HgCdTe. Electron. Mater. 34, 880–884 (2005). https://doi.org/10.1007/s11664-005-0036-2
  16. Lee, D. et al. Law 19: the ultimate photodiode performance metric. SPIE 11407, 114070X (2020). https://doi.org/10.1117/12.2564902
  17. Yang, Z., Dou, J. & Wang, M. Graphene, Transition Metal Dichalcogenides, and Perovskite Photodetectors. in Two-Dimensional Materials for Photodetector (ed. Nayak, P. K.) 1–20 (IntechOpen, 2018). http://doi.org/10.5772/intechopen.74021
  18. Pi, L., Li, L., Liu, K., Zhang, Q. Li, H. & Zhai, T. Recent progress on 2D noble-transition-metal Adv. Funct. Mater. 29, 1904932 (2019). https://doi.org/10.1002/adfm.201904932
  19. Vargas-Bernal, R. Graphene Against Other Two-Dimensional Materials: A Comparative Study on the Basis of Photonic Applications. in Graphene Materials (eds. Kyzas, G. Z. & Mitropoulos, A. Ch.) 103–121 (IntechOpen, 2017). http://doi.org/10.5772/67807
  20. Rogalski, A., Martyniuk, P. & Kopytko, M. Type-II superlattice photodetectors versus HgCdTe photodiodes. Quantum Electron. 68, 100228 (2019). https://doi.org/10.1016/j.pquantelec.2019.100228
  21. Delaunay, P. Y., Nosho, B. Z., Gurga, A. R., Terterian, S. & Rajavel,  D. Advances in III-V based dual-band MWIR/LWIR FPAs at HRL. Proc. SPIE 10177, 101770T-1–12 (2017). https://doi.org/10.1117/12.2266278
  22. Lawson, W. D., Nielson, S., Putley, E. H. & Young, A. S. Preparation and properties of HgTe and mixed crystals of HgTe-CdTe. Phys. Chem. Solids 9, 325–329 (1959). https://doi.org/10.1016/0022-3697(59)90110-6
  23. Lee, D. et al. Law 19 – The Ultimate Photodiode Performance Metric. in Extended Abstracts. The 2019 U.S. Workshop on the Physics and Chemistry of II-VI Materials 13–15 (2019).
  24. Rogalski, A., Kopytko, M., Martyniuk, P. & Hu, W. Comparison of performance limits of HOT HgCdTe photodiodes with 2D material infrared photodetectors. Opto-Electron. Rev. 28, 82–92 (2020). https://doi.org/10.24425/opelre.2020.132504
  25. Tennant, W. E., Lee, D., Zandian, M., Piquette, E. & Carmody, M. MBE HgCdTe technology: A very general solution to IR detection, described by ‘Rule 07’, a very convenient heuristic. Electron. Mater. 37, 1406–1410 (2008). https://doi.org/10.1007/s11664-008-0426-3
  26. Long, M. et al. Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus. Adv. 3, e1700589 (2017). https://doi.org/10.1126/sciadv.1700589
  27. Du, S. et al. A broadband fluorographene photodetector. Mater. 29, 1700463 (2017). https://doi.org/10.1002/adma.201700463
  28. Long, M. et al. Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability. ACS Nano 13, 2511−2519 (2019). https://doi.org/10.1021/acsnano.8b09476
  29. Chen, Y. Unipolar barrier photodetectors based on van der Waals heterostructures. Electron. 4, 357–363 (2021). https://doi.org/10.1038/s41928-021-00586-w
  30. Amani, M., Regan, E., Bullock, J., Ahn, G. H. & Javey, A. Mid-wave infrared photoconductors based on black phosphorus-arsenic alloys. ACS Nano 11, 11724–11731 (2017). https://doi.org/10.1021/acsnano.7b07028
  31. Lukman, S. et al. High oscillator strength interlayer excitons in two-dimensional heterostructures for mid-infrared photodetection. Nat. Nanotechnol. 15, 675–682 (2020). https://org/10.1038/s41565-020-0717-2
  32. VIGO System Catalog 2018/2019. VIGO System S.A. https://vigo.com.pl/wp-content/uploads/2017/06/VIGO-Catalogue.pdf (2018).
  33. Mercury Cadmium Telluride Detectors. Teledyne Judson Techno-logies LLC http://www.teledynejudson.com/prods/Documents/MCT_shortform_Dec2002.pdf (2002).
  34. Zhong, F. et al. Recent progress and challenges on two-dimensional material photodetectors from the perspective of advanced characterization Nano Res. 14, 1840–1862 (2021). https://doi.org/10.1007/s12274-020-3247-1
  35. Huang, et al. Waveguide integrated black phosphorus photo-detector for mid-infrared applications. ACS Nano 13, 913–921 (2019). https://doi.org/10.1021/acsnano.8b08758
  36. Bullock, J. et al. Polarization-resolved black phosphorus/ molybdenum disulfide mid-wave infrared photodiodes with high detectivity at room temperature. Photonics 12, 601–607 (2018). https://doi.org/10.1038/s41566-018-0239-8
  37. Yu, X. et al. Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor. Commun. 9, 1545 (2018). https://doi.org/10.1038/s41467-018-03935-0
  38. Yu, X. et al. Narrow bandgap oxide nanoparticles coupled with graphene for high performance mid-infrared photodetection. Commun. 9, 4299 (2018). https://doi.org/10.1038/s41467-018-06776-z
  39. Long, M., Wang, P., Fang, H. & Hu. W. Progress, challenges, and opportunities for 2D material-based photodetectors. Funct. Mater. 1803807 (2018). https://doi.org/10.1002/adfm.201803807
  40. Wang, P. et al. Arrayed van der Waals broadband detectors for dual-band detection. Mater. 29, 1604439 (2017). https://doi.org/10.1002/adma.201604439
  41. Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Photonics 11, 366–371 (2017). https://doi.org/10.1038/nphoton.2017.75
  42. Konstantatos, G. et al. Hybrid graphene-quantum dot photo-transistors with ultrahigh gain. Nanotechnol. 7, 363–368 (2012). https://doi.org/10.1038/nnano.2012.60
  43. Phillips, J. Evaluation of the fundamental properties of quantum dot infrared detectors. J. Appl. Phys. 91, 4590–4594 (2002). https://doi.org/10.1063/1.1455130
  44. Jerram P. & Beletic, J. Teledyne’s high performance infrared detectors for space missions. SPIE 11180, 111803D-2 (2018). https://doi.org/10.1117/12.2536040
  45. Buscema, M. et al. Photocurrent generation with two-dimensional van der Waals semiconductor. Rev. 44, 3691–3718 2015. https://doi.org/10.1039/C5CS00106D
  46. Wang, J. et al. Recent progress on localized field enhanced two-dimensional material photodetectors from ultraviolet-visible to infrared. Small 13, 1700894 (2017). https://doi.org/10.1002/smll.201700894
  47. An, J. et al. Research development of 2D materials-based photodetectors towards mid-infrared regime. Nano Select 2, 527 (2021). https://doi.org/10.1002/nano.202000237
  48. Wu, D. et al. Mixed-dimensional PdSe2/SiNWA heterostructure based photovoltaic detectors for self-driven, broadband photodetection, infrared imaging and humidity sensing. Mater. Chem. A 8, 3632–3642 (2020). https://doi.org/10.1039/C9TA13611H
  49. Zeng, L.-H. et al. Controlled synthesis of 2D palladium diselenide for sensitive photodetector applications. Funct. Mater. 29, 1806878 (2019). https://doi.org/10.1002/adfm.201806878
  50. Imec shows excellent performance in ultra-scaled FETs with 2D-material channel. Imec. https://www.imec-int.com/en/articles/imec-shows-excellent-performance-in-ultra-scaled-fets-with-2d-material-channel (2019).
  51. Scaling Up Large-area Integration of 2D Materials. Compound Semiconductor. https://compoundsemiconductor.net/article/112712/Scaling_Up_Large-area_Integration_Of_2D_Materials (2021).
  52. Briggs, N. et al. A roadmap for electronic grade 2D materials. 2D Mater. 6, 022001 (2019). https://doi.org/10.1088/2053-1583/aaf836
  53. IRDS International Roadmap for Devices and SystemsTM 2018 Update. IEEE. https://irds.ieee.org/images/files/pdf/2018/2018IRDS
    _MM.pdf
    (2018).
Go to article

Authors and Affiliations

Antoni Rogalski
1
ORCID: ORCID

  1. Institute of Applied Physics, Military University of Technology, 2 Kaliskiego St., 00-908 Warsaw, Poland

This page uses 'cookies'. Learn more