Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Self-curing concrete SC is a concrete type that can be cured without using any external curing regimes. It can perform by several methods such as using lightweight aggregate or chemical agents. In this research chemical curing agent is used to produce SC. This paper reports the results of a research study conducted to evaluate the effect of sulfates on the performance of self-curing concrete compared to ordinary concrete. Samples are immersed in sodium sulfate Na2S04 solution of 4% concentration. Results are measured in terms of compressive strength, tensile strength, flexural strength and mass loss. It was found that the rate of strength loss is noticed at ordinary concrete compared to SC concrete. Sulfate resistance is improved when using self-curing concrete. This improvement appears to be dependent on using a chemical curing agent.

Go to article

Authors and Affiliations

A.A. Bashandy
Download PDF Download RIS Download Bibtex

Abstract

The use of ammonium nitrate due to its high nitrogen content (> 26%) has made it the most utilized fertilizer in agricultural areas. However, being easily accessible with this feature encouraged its use for different purposes. Ammonium nitrate is usually produced with large tonnage (> 50 ton/h) and high cost (> $20 million) production processes. Therefore, any changes that can be made in the process must be applied in the process so that the result can be achieved easily without increasing the cost in any way. In this study, it is aimed to reduce the explosion sensitivity of ammonium nitrate used for explosive purposes in terrorist attacks. Thus, it was aimed to solve the problem by adding various chemicals to the ammonium nitrate production process so that it can only be used for agricultural purposes. For this purpose, the production process was examined by adding carboxymethyl cellulose and polyethylene glycol to the ammonium nitrate production process and the accuracy of the results was tested by instrumental analysis methods.

Go to article

Authors and Affiliations

Ahmet Ozan Gezerman
Download PDF Download RIS Download Bibtex

Abstract

The need for mass population vaccination against Covid-19 poses a public health problem. Allergic symptoms occurring after the 1st dose of the vaccine may result in resignation from the admin-istration of the 2nd dose. However, the majority of patients with mild and/or non-immediate symptoms may be safely vaccinated. The only absolute contraindication to administration of the vaccine is an anaphylactic reaction to any of its ingredients. Polyethylene glycol (PEG), widely used as an excipient in various vaccines, is considered the primary cause of allergic reactions associated with administration of Comirnaty (Pfizer/BioNTech) and Covid-19 Vaccine (Moderna) vaccines. However, hypersensitivity to PEG reported to date seems very rare, considering its widespread use in multiple everyday products, including medicines and cosmetics. In the paper, current literature data describing mechanisms of hy-persensitivity reactions to PEG, their clinical symptoms and diagnostic capabilities are presented. Un-doubtedly, the issue of hypersensitivity to PEG warrants further research, while patients with the diagnosis require individual diagnostic and therapeutic approach.
Go to article

Bibliography

1. Robinson L.B., Landman A.B., Shenoy E.S., et al.: Allergic symptoms after mRNA COVID-19 vaccination and risk of incomplete vaccination. J Allergy Clin Immunol Pract. 2021 Aug; 9 (8): 3200–3202.
2. Krantz M.S., Bruusgaard-Mouritsen M.A., Koo G., Phillips E.J., Stone C.A., Garvey L.H.: Anaphylaxis to the first dose of mRNA SARS-CoV-2 vaccines: Don’t give up on the second dose! Allergy. 2021 Sep; 76 (9): 2916–2920. doi: 10.1111/all.14958
3. CDC COVID-19 Response Team, FDA: Allergic Reactions Including Anaphylaxis After Receipt of the First Dose of Pfizer-BioNTech COVID-19 Vaccine — United States, December 14–23, 2020. Centers for Disease Control and Prevention. 2021. https://www.cdc.gov/mmwr/volumes/70/wr/mm7002e1.htm (Accessed 02 Apr 2021).
4. CDC COVID-19 Response Team, Administration FDA: Allergic reactions including anaphylaxis after receipt of the first dose of Moderna COVID-19 vaccine — United States, December 21, 2020–January 10, 2021. MMWR Morb Mortal Wkly Rep. 2021; 70: 125e9.
5. Narodowy Instytut Zdrowia: Niepożądane Odczyny Poszczepienne po szczepionkach przeciw COVID-19 w Polsce. Raport za okres 27.12.2020–31.07.2021. https://www.pzh.gov.pl/wp-content/uploads/2021/08/Raport-NOP-do-31.07.2021.pdf (Accessed 10 Aug 2021).
6. Cabanillas B., Novak N.: Allergy to COVID-19 vaccines: A current update. Allergol Int. 2021 Jul; 70 (3): 313–318. doi: 10.1016/j.alit.2021.04.003
7. Kruszewski J., Cichocka-Jarosz E., Czarnobilska E., et al.: Recommendations of the Polish Society of Allergology on the qualification of person with allergies and anaphylaxis to vaccination against COVID-19. Alergologia Polska — Polish Journal of Allergology. 2021; 8, 1: 1–8. doi: https://doi.org/10.5114/pja.2021.10422
8. Hyun-Jun J., Chan Young S., Kyu-Bong K.: Safety Evaluation of Polyethylene Glycol (PEG) Compounds for Cosmetic Use. Toxicol Res. 2015 Jun; 31(2):105–136. doi: 10.5487/TR.2015.31.2.105
9. Wenande E., Garvey L.H.: Immediate-type hypersensitivity to polyethylene glycols: a review. Clin Exp Allergy 2016 Jul; 46 (7): 907–922. doi: 10.1111/cea.12760
10. Stone C.A. Jr., Liu Y., Relling M.V., et al.: Immediate Hypersensitivity to Polyethylene Glycols and Polysorbates: More Common Than We Have Recognized. J Allergy Clin Immunol Pract. 2019 May– Jun; 7 (5): 1533–1540.e8. doi: 10.1016/j.jaip.2018.12.003
11. Castells M.C., Phillips E.J.: Maintaining Safety with SARS-CoV-2 Vaccines. N Engl J Med. 2021 Feb; 384 (7): 643–649. doi: 10.1056/NEJMra2035343
12. Klimek L., Jutel M., Akdis C.A., et al.: ARIA-EAACI statement on severe allergic reactions to COVID-19 vaccines — An EAACI-ARIA Position Paper. Allergy. 2021 Jun; 76 (6): 1624–1628. doi: 10.1111/all.14726
13. Klimek L., Bergmann K.C., Brehler R., et al.: Practical handling of allergic reactions to COVID-19 vaccines: A position paper from German and Austrian Allergy Societies AeDA, DGAKI, GPA and ÖGAI. Allergo J Int. 2021 Apr; 1–17. doi: 10.1007/s40629-021-00165-7
14. Rutkowski K., Mirakian R., Till S., Rutkowski R., Wagner A.: Adverse reactions to COVID-19 vaccines: A practical approach. Clin Exp Allergy. 2021 Jun; 51 (6): 770–777. doi: 10.1111/cea.13880
15. Pawliczak R.: Alergologia-kompendium. In: Pawliczak R., ed. Mechanizmy uczulenia. 1st Ed. Poznań: Termedia Wydawnictwa Medyczne; 2013; 31–35.
16. Giavina-Bianchi P., Kalil J.: Polyethylene Glycol Is a Cause of IgE-Mediated Anaphylaxis. J Allergy Clin Immunol Pract. 2019; 7 (6): 1874–1875. doi: 10.1016/j.jaip.2019.05.001
17. Wenande E.C., Skov P.S., Mosbech H., Poulsen L.K., Garvey L.H.: Inhibition of polyethylene glycol- induced histamine release by monomeric ethylene and diethylene glycol: a case of probable polyethylene glycol allergy. J Allergy Clin Immunol. 2013 May; 131 (5): 1425–1427. doi: 10.1016/j.jaci.2012.09.037
18. Borderé A., Stockman A., Boone B., et al.: A case of anaphylaxis caused by macrogol 3350 after injection of a corticosteroid. Contact Dermatitis. 2012 Dec; 67 (6): 376–378. doi: 10.1111/j.1600-0536.2012.02104.x
19. Wylon K., Dölle S., Worm M.: Polyethylene glycol as a cause of anaphylaxis. Allergy Asthma Clin Immunol. 2016 Dec; 12: 67. doi: 10.1186/s13223-016-0172-7. eCollection 2016.
20. Cox F., Khalib K., Conlon N.: PEG That Reaction: A Case Series of Allergy to Polyethylene Glycol. J Clin Pharmacol. 2021 Jun; 61 (6): 832–835. doi: 10.1002/jcph.1824. Epub 2021 Feb 28.
21. Greenhawt M., Abrams E.M., Oppenheimer J.: The COVID-19 Pandemic in 2021: Avoiding Overdiagnosis of Anaphylaxis Risk While Safely Vaccinating the World. J Allergy Clin Immunol Pract. 2021 Apr; 9 (4): 1438–1441. doi: 10.1016/j.jaip.2021.01.022
22. Bruusgaard-Mouritsen M.A., Jensen B.M., Poulsen L.K., Duus Johansen J., Garvey L.H.: Optimizing investigation of suspected allergy to polyethylene glycols. J Allergy Clin Immunol. 2021 May; S0091-6749(21)00825-3. doi: 10.1016/j.jaci.2021.05.020
23. Pickert J., Hennighausen I., Mühlenbein S., Möbs C., Pfützner W.: Immediate-Type Hypersensitivity to Polyethylene Glycol (PEG) Including a PEG-containing COVID-19 Vaccine Revealed by Intradermal Testing. J Investig Allergol Clin Immunol. 2021 Jun; 15: 0. doi: 10.18176/jiaci.0720
24. Wolfson A.R., Robinson L.B., Li L., et al.: First-Dose mRNA COVID-19 Vaccine Allergic Reactions: Limited Role for Excipient Skin Testing. J Allergy Clin Immunol Pract. 2021 Sep; 9 (9): 3308–3320.e3. doi: 10.1016/j.jaip.2021.06.010
25. Santos A.F., Alpan O., Hoffmann H.J.: Basophil activation test: Mechanisms and considerations for use in clinical trials and clinical practice. Allergy. 2021 Aug; 76 (8): 2420–2432. doi: 10.1111/all.14747
26. Ansotegui I.J., Melioli G., Canonica G.W., et al.: IgE allergy diagnostics and other relevant tests in allergy, a World Allergy Organization position paper. World Allergy Organ J. 2020 Feb; 13 (2): 100080. doi: 10.1016/j.waojou.2019.100080
27. Spiewak R.: Eczema and food allergy — is there a causal relationship? Przegl Lek. 2013; 70 (12): 1051– 1055.
28. Braun W.: Contact allergies to polyethylene glycols. Z Haut Geschlechtskr. 1969 Jun; 44 (11): 385– 389.
29. Bajaj A.K., Gupta S.C, Chatterjee A.K., Singh K.G.: Contact sensitivity to polyethylene glycols. Contact Dermatitis. 1990 May; 22 (5): 291–292. doi: 10.1111j.16000536.1990.tb01602.x
30. Özkaya E, Kılıç S.: Polyethylene glycol as marker for nitrofurazone allergy: 20 years of experience from Turkey. Contact Dermatitis. 2018 Mar; 78 (3): 211–215. doi: 10.1111/cod.12931
31. Caballero M.L., Quirce S.: Delayed Hypersensitivity Reactions Caused by Drug Excipients: A Literature Review. J Investig Allergol Clin Immunol. 2020; 30 (6): 400–408. doi: 10.18176/jiaci.0562
32. Bruusgaard-Mouritsen M.A., Johansen J.D., Garvey L.H.: Clinical manifestations and impact on daily life of allergy to polyethylene glycol (PEG) in ten patients. Clin Exp Allergy. 2021 Mar; 51 (3): 463– 470. doi: 10.1111/cea.13822
Go to article

Authors and Affiliations

Maria Czarnobilska
1
Małgorzata Bulanda
2
Magdalena Kurnik-Łucka
1
Krzysztof Gil
1

  1. Department of Pathophysiology, Jagiellonian University Medical College, Kraków, Poland
  2. Department of Clinical and Environmental Allergology, Jagiellonian University Medical College, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

TiO2 is one of the most widely used metal oxide semiconductors in the field of photocatalysis for the self-cleaning purpose to withdraw pollutants. Polyethylene glycol (PEG) is recommended as a stabilizer and booster during preparation of water-soluble TiO2. Preparation of SnO2/TiO2 thin film deposition on the surface of ceramic tile was carried out by the sol-gel spin coating method by adding different amount of PEG (0g, 0.2g, 0.4g, 0.6g, 0.8g) during the preparation of the sol precursor. The effects of PEG content and the annealing temperature on the phase composition, crystallite size and the hydrophilic properties of SnO2/TiO2 films were studied. The X-ray diffraction (XRD) spectra revealed different phases existed when the films were annealed at different annealing temperatures of 350°C, 550°C and 750°C with 0.4 g of PEG addition. The crystallite sizes of the films were measured using Scherrer equation. It shows crystallite size was dependent on crystal structure existed in the films. The films with mixed phases of brookite and rutile shows the smallest crystallite size. In order to measure the hydrophilicity properties of films, the water contact angles for each film with different content of PEG were measured. It can be observed that the water contact angle decreased with the increasing of the content of PEG. It shows the superhydrophilicity properties for the films with the 0.8 g of PEG annealed at 750°C. This demonstrates that the annealed temperature and the addition of PEG affect the phase composition and the hydrophilicity properties of the films.
Go to article

Authors and Affiliations

Dewi Suriyani Che Halin
1 2
ORCID: ORCID
A. Azliza
1 2
ORCID: ORCID
Kamrosni Abdul Razak
1 2
ORCID: ORCID
Mohd Mustafa Albakri Abdullah
1 2
ORCID: ORCID
Mohd Arif Anuar Mohd Salleh
1 2
ORCID: ORCID
Juyana A Wahab
1 2
ORCID: ORCID
V. Chobpattana
3
ORCID: ORCID
L. Kaczmarek
4
ORCID: ORCID
M. Nabiałek
5
ORCID: ORCID
B. Jeż
5
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CEGeoGTech), Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis Malaysia
  3. Rajamangala University of Technology Thanyaburi (RMUTT), Faculty of Engineering, Department of Materials and Metallurgical Engineering, Thailand
  4. Lodz University of Technology (TUL), Institute of Materials Science and Engineering,1/15, Stefanowskiego Str., 90-924 Lodz, Poland
  5. Czestochowa University of Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Czestochowa, Poland

This page uses 'cookies'. Learn more