Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Fractal analysis is one of the rapidly evolving branches of mathematics and finds its application in different analyses such as pore space description. It constitutes a new approach to the issue of their natural irregularity and roughness. To be properly applied, it should be encompassed by an error estimation. The article presents and verifies uncertainties along with imperfections connected with image analysis and expands on the possible ways of their correction. One of key aspects of such research is finding both appropriate place and the number of photos to take. A coarse- grained sandstone thin section was photographed and then pictures were combined into one, bigger image. Fractal parameters distributions show their change and suggest that the accurately gathered group of photos include both highly and less porous regions. Their amount should be representative and adequate to the sample. The resolution influence on the fractal dimension and lacunarity values was examined. For SEM limestone images obtained using backscattered electrons, magnification in the range of 120x to 2000x was used. Additionally, a single pore was examined. The acquired results point to the fact that the values of fractal dimension are similar to a wide range of magnifications, while lacunarity changes each time. This is connected with changing homogeneity of the image. The article also undertakes a problem of determining fractal parameters spatial distribution based on binarization. The available methods assume that it is carried out after or before the image division into rectangles to create fractal dimension and lacunarity values for interpolation. An individual binarization, although time consuming, provides better results that resemble reality to a closer degree. It is not possible to define a single, correct methodology of error elimination. A set of hints has been presented that can improve results of further image analysis of pore space.

Go to article

Authors and Affiliations

Michał Figiel
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the qualitative and quantitative characteristics of microstructures of Neogene clays from Warsaw, Poland. Scanning Electron Microscope (SEM) studies were used for the microstructural analysis of natural clays and clay pastes. Qualitative microstructural changes were observed: from a honeycomb microstructure for the initial clay paste to a turbulent microstructure for the dried paste. It was also noticed that water loss caused by the increase of the suction pressure had a significant impact on the microstructural transformations. Significant changes in the quantitative values of the pore space parameters were also observed. Increase of suction pressure and water loss caused a decrease in porosity and changes in the values of morphometric parameters, such as pore distribution; for example, a significant increase of the number of pores of 0−10 μm size and changes in the geometric parameters of the pore space were noticed with the increase of suction pressure. The pore space with larger isometric pores was modified into a pore space with the dominance of small anisometric and fissure-like pores. The increased degree of anisotropy from a poorly-oriented to a highly-oriented microstructure was also observed. After rapid shrinkage the reduction in the number of pores, maximum pore diameter, and total pore perimeter was recorded. The process of rapid water loss induced the closure of very small pores. A similar effect was observed during the increase of the suction pressure, where the closure of pore space of the clay pastes was observed very clearly.

Go to article

Authors and Affiliations

Emilia Wójcik
Jerzy Trzciński
Katarzyna Łądkiewicz-Krochmal

This page uses 'cookies'. Learn more