Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 12
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Water samples were collected from irrigation ditches and drainage canals surrounding fields in southern Greater Poland. Initially, the samples were subjected to low and highspeed centrifugation and obtained pellets were used to perform biological assays. Viral identification involved biological, electron microscopic as well as molecular methods. The occurrence of Tobacco mosaic virus (TMV) and Tomato mosaic virus (ToMV) was demonstrated in 12 of the 17 examined water sources. The molecular analysis results showed TMV and ToMV co-infections in the analysed water samples. To our knowledge, this is the first report of tobamoviruses being found in environmental water in Poland.
Go to article

Authors and Affiliations

Małgorzata Jeżewska
Aleksandra Zarzyńska-Nowak
Katarzyna Trzmiel
Download PDF Download RIS Download Bibtex

Abstract

The present study was conducted to characterize the infectious bursal disease virus (IBDV) circulating in clinically diseased broiler chicken flocks with previous vaccination history during 2015-2016 in Egypt. IBDVs were isolated from 48 out of 63 of the investigated bursae from 10 flocks onto embryonated chicken eggs (ECEs) and verified by reverse transcriptase-poly- merase chain reaction (RT-PCR). Histopathologically, bursae lesions revealed some lymphocytes depletion as well as the presence of vesicles in the lining epithelium. The hyper variable region (HVR) of VP2 and VP1 genes of the 10 isolates (1 isolate/flock) were partially sequenced and subjected to comparative alignment and phyologenetic analysis. Phylogenetically, IBDV isolates were clustered into two distinct genetic lineages: variants of classical virulent (cv) and very viru- lent (vv) IBDV strains based on VP1 and VP2 amino acid (aa) sequences. Alignment analysis of HVR-VP2 aa sequences has demonstrated that the vvIBDV isolates have the conserved residues of the vvIBDV pathotype (A222, I242, and I256), while, the cvIBDV isolates have the same aa sequences of the classical attenuated vaccine strain (D78). Expected single point mutation occurred at position 253 (H253N). All previously characterized isolates were re-subjected to molecular analysis with VP1 protein due to its correlation with virulence and pathogenicity of IBDVs. vvIBDV isolates have the conserved tripeptide (TDN), while, the cvIBDV isolates have aa substitutions at conserved tripeptide including NEG at 145-147 amino acid. The present study has demonstrated that variants of classical virulent and very virulent IBDV circulated among vaccinated flocks in Egypt during 2015-2016.

Go to article

Authors and Affiliations

M.S. Abou El-Fetouh
F.M. Abdallah
Download PDF Download RIS Download Bibtex

Abstract

The full-length cDNA of LeTIR1 gene was isolated from tomato with EST-based in silico cloning followed by RACE amplification. LeTIR1 contained an open reading frame (ORF) 1872 bp long, encoding 624 amino acid residues. The predicted protein LeTIR1 had one F-box motif and eleven leucine-rich repeats (LRRs), all of which are highly conserved in TIR1 proteins of other plant species. Phylogenetic analysis showed that the LeTIR1 protein shared high similarity with other known TIR1 proteins. Both sequence and phylogenetic analysis suggested that LeTIR1 is a TIR1 homologue and encodes an F-box protein in tomato. Semi-quantitative RT-PCR indicated that LeTIR1 was expressed constitutively in all organs tested, with higher expression in stem than root, leaf, flower and fruit. Its expression level was positively correlated with the auxin distribution in stem or axillary shoot, and was induced by spraying exogenous IAA.

Go to article

Authors and Affiliations

Yu Qiao
Xiao-Ming Feng
Chun-Xiang You
Ze-Zhou Liu
Shuang-Shuang Wang
Yu-Jin Hao
Download PDF Download RIS Download Bibtex

Abstract

Numerous plant species around the world suffer from the presence of viruses, which especially in economically important crops, cause irretrievable damage and/or extensive losses. Many biotechnological approaches have been developed, such as meristem culture, chemotherapy, thermotherapy or cryotherapy, to eliminate viruses from infected plants. These have been used alone or in combination. In this work, meristem culture, thermotherapy and cryotherapy were compared for Apple mosaic virus elimination from hazelnut local cultivar “Palaz”. The virus-free plant was also confirmed by reverse transcriptase polymerase chain reaction (RT-PCR) after each treatment and, the best results were obtained by cryotherapy. A one step freezing technique, droplet vitrification, was used for cryotherapy, and the best regeneration percentage was 52%. After cryotherapy, virus-free seedlings of hazelnut local cultivar “Palaz” were confirmed as being virus-free after three subcultured periods.
Go to article

Bibliography

1. Akbas B., Degirmenci K. 2009. Incidence and natural spread of Apple mosaic virus on hazelnut in the west black sea coast of Turkey and its effect on yield. Journal of Plant Pathology 91 (3): 767–771. DOI: https://doi.org/10.4454/jpp.v91i3.577
2. Balamuralikrishnan M., Doraisamy S., Ganapathy T., Viswanathan R. 2002. Combined Effect of Chemotherapy and Meristem Culture on Sugarcane Mosaic Virus Elimination in Sugarcane. Sugar Tech 4 (2): 19–25. DOI: https://doi.org/10.1007/BF02956875
3. Bettoni J.C., Costa M.D., Gardin J.P.P., Kretzschmar A.A., Pathirana R. 2016. Cryotherapy: a new technique to obtain grapevine plants free of viruses. Revista Brasileira de Fruticultura 38: 2–13. DOI: https://doi.org/10.1590/0100-29452016833
4. Dĩaz-Barrita A.J., Norton M, Martĩnez-Peniche R.A., Uchanski M., Mulwa R., Skirvin R.M. 2008. The use of thermotherapy and in vitro meristem culture to produce virus-free ‘Chancellor’ grapevines. International Journal of Fruit Science 7 (3): 15–25. DOI: https://doi.org/10.1300/J492v07n03_03
5. Feng C., Wang R., Li J., Wang B., Yin Z., Cui Z., Li B., Bi W., Zhang Z., Li M., Wang Q. 2013. Production of pathogen-free horticultural crops by cryotherapy of in vitro-grown shoot tips. p. 463–482. In: "Protocols for Micropropagation of Selected Economically-Important Horticultural Plants" (M. Lambardi, E.A. Ozudogru, S.M. Jain, eds.). Methods in Molecular Biology, Clifton, New York, 490 pp. DOI: https://doi.org/10.1007/978-1-62703-074-8
6. Gergerich R.C., Dolja V.V. 2006. Introduction to plant viruses, the invisible foe. The Plant Health Instructor: 478. DOI: https://doi.org/10.1094/PHI-I-2006-0414-01
Helliot B., Panis B., Poumay Y., Swennen R., Lepoivre P., Frison E. 2002. Cryopreservation for the elimination of cucumber mosaic and banana streak viruses from banana ( Musa spp.). Plant Cell Reports 20 (12): 1117–1122. DOI: https://doi.org/10.1007/s00299-002-0458-8
7. Hu G., Dong Y., Zhang Z., Fan X., Ren F., Zhou J. 2015. Virus elimination from in vitro apple by thermotherapy combined with chemotherapy. Plant Cell, Tissue and Organ Culture 121 (2): 435–443. DOI: https://doi.org/10.1007/s11240-015-0714-6
8. Hu J.S., Li H.P., Barry K., Wang M. 1995. Comparison of dot blot, ELISA, and RT-PCR assays for detection of two Cucumber mosaic virus isolates infecting banana in Hawaii. Plant Disease 79 (9): 902–906. DOI: https://doi.org/10.1094/PD-79-0902
9. Kaya E. 2015. Using reverse transcription-polymerase chain reaction (RT-PCR) for determination of Apple mosaic ilarvirus (ApMV) in hazelnut ( Corylus avellana L.) cultivars. JSM Biochemistry and Molecular Biology 3 (1): 1011.
10. Kaya E., Alves A., Rodrigues L., Jenderek M., Hernandez-Ellis M., Ozudogru A., Ellis D. 2013. Cryopreservation of Eucalyptus Genetic Resources. CryoLetters 34 (6): 608–618.
11. Kaya E., Galatali S., Guldag S., Ozturk B. 2020. A new perspective on cryotherapy: pathogen elimination using plant shoot apical meristem via cryogenic techniques. p. 137–148. In: " Plant Stem Cells: Methods and Protocols" (M. Naseem, T. Dandekar, eds.). Springer, US, 150 pp. DOI: https://doi.org/10.1007/978-1-0716-0183-9
12. Kaya E., Souza F.V.D. 2017. Comparison of two PVS2-based procedures for cryopreservation of commercial sugarcane ( Saccharum spp.) germplasm and confirmation of genetic stability after cryopreservation using ISSR markers. In Vitro Cellular and Developmental Biology - Plant 53: 410–417. DOI: https://doi.org/10.1007/s11627-017-9837-2
13. Kobylko T., Nowak B., Urban A. 2005. Incidence of Apple mosaic virus (ApMV) on hazelnut in south-east Poland. Folia Horticulturae 17 (2): 153–161.
14. Kumar S., Khana M.S., Raja S.K., Sharmab A.K. 2009. Elimination of mixed infection of Cucumber mosaic and Tomato aspermy virus from Chrysanthemum morifolium Ramat. cv. Pooja by shoot meristem culture. Scientia Horticulturae 119 (2): 108–112. DOI: https://doi.org/10.1016/j.scienta.2008.07.017
15. Lambardi M., Sharma K.K., Thorpe T.A. 1993. Optimization of in vitro bud induction and plantlet formation from mature embryos of Aleppo pine ( Pinus halepensis Mill.). In Vitro Cellular and Developmental Biology – Plant 29: 189–199. DOI: https://doi.org/10.1007/BF02632034
16. Lloyd G., McCown B. 1980. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia by use of shoot tip culture. International Plant Propagators' Society 30: 421–427.
17. López-Delgado H., Mora-Herrera M.E., Zavaleta-Mancera H.A., Cadena-Hinojosa M., Scott I.M. 2004. Salicylic acid enhances heat tolerance and potato virus X (PVX) elimination during thermotherapy of potato microplants. American Journal of Potato Research 81 (3): 171–176. DOI: https://doi.org/10.1007/BF02871746
18. Marascuilo L.A., McSweeney M. 1977. Post-hoc multiple comparisons in sample preparations for test of homogeneity. p. 141–147. In: “Non-Parametric and Distribution-Free Methods for the Social Sciences” (M. McSweeney, L.A. Marascuilo, eds.). Pacific Grove, CA, USA: Brooks/Cole Publications.
19. Menzel N., Jelkmann N., Maiss E. 2002. Detection of four apple viruses by multiplex RT-PCR assays with coamplification of plant m-RNA as internal control. Journal of Virological Methods 99: 89–92. DOI: https://doi.org/10.1016/S0166-0934(01)00381-0
20. Milosevic S., Cingel A., Jevremovic S.B., Stankovic I., Bulajic A., Branka K., Subotic A. 2012. Virus elimination from ornamental plants using in vitro culture techniques. Journal Pesticides and Phytomedicine – Pesting 27 (3): 203–211. DOI: https://doi.org/10.2298/PIF1203203M
21. Nukari A., Uosukainen M., Rokka V.M. 2009. Cryopreservation techniques and their application in vegetatively propagated crop plants in Finland. Agricultural and Food Science 18: 117–128. DOI: https://doi.org/10.2137/145960609789267506
22. O’Donnell K. 1999. Plant pathogen diagnostics: present status and future developments. Potato Research 42: 437–447. DOI: https://doi.org/10.1007/BF02358160
23. Ozudogru E.A., Kaya E., Kirdok E., Issever-Ozturk S. 2011. In vitro propagation from young and mature explants of thyme ( Thymus vulgaris and T. longicaulis) resulting in genetically stable shoots. In Vitro Cellular & Developmental Biology – Plant 47: 309–320. DOI: https://doi.org/10.1007/s11627-011-9347-6
24. Paprstein F., Sedlak J., Polak J., Svobodova L., Hassan M., Bryxiova M. 2008. Results of in vitro thermotherapy of apple cultivars. Plant Cell Tissue and Organ Culture 94 (3): 347–352. DOI: https://doi.org/10.1007/s11240-008-9342-8
25. Paprstein F., Sedlak J., Svobodova L., Polak J., Gadiou S. 2013. Results of in vitro chemotherapy of apple cv. Fragrance. Horticultural Science 40: 186–190. DOI: https://doi.org/10.17221/37/2013-HORTSCI
26. Ramgareeb S., Snyman S.J., van Antwerpen T., Rutherford R.S. 2010. Elimination of virus and rapid propagation of disease-free sugarcane ( Saccharum spp. cultivar NCo376) using apical meristem culture. Plant Cell Tissue and Organ Culture 100: 175–181. DOI: https://doi.org/10.1007/s11240-009-9634-7
27. Rout G.R., Mohanpatra A., Jain M.S. 2006. Tissue culture of ornamental pot plant: A critical review on present scenario and future prospects. Biotechnology Advances 24 (6): 531–560. DOI: https://doi.org/10.1016/j.biotechadv.2006.05.001
28. Sakai A., Kobayashi S., Oiyama I. 1990. Cryopreservation of nucellar cells of navel orange ( Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Reports 9: 30–33. DOI: https://doi.org/10.1007/BF00232130
29. Sellner L.N., Coelen R.J., Mackenzie J.S. 1992. A one-tube, one manipulation RT-PCR reaction for detection of Ross river virus. ‎ Journal of Virological Methods 40 (3): 255–263. DOI: https://doi.org/10.1016/0166-0934(92)90084-Q
30. Slack S.A., Tufford L.A. 1995. Meristem culture for virus elimination. p. 117–128. In: "Plant Cell, Tissue and Organ Culture, Fundamental Methods" (O.L. Gamborg, G.C. Phillips, eds.), Springer-Verlag Berlin Heidelberg, 349 pp. DOI: https://doi.org/10.1007/978-3-642-79048-5
31. Spiegel S., Frison E.A., Converse R.H. 1993. Recent development in therapy and virus-detection procedures for international movements of clonal plant germplasm. Plant Disease 77: 176–1180. DOI: https://doi.org/10.1094/PD-77-1176
32. Spiegel S., Scott W., Bowman-Vance V., Tam Y., Galiakparov N.N., Rosner A. 1996. Improved detection of prunus necrotic ringspot virus by the polymerase chain reaction. European Journal of Plant Pathology 102 (7): 681–685. DOI: https://doi.org/10.1007/BF01877249
33. Tan R., Wang L., Hong N., Wang G. 2010. Enhanced efficiency of virus eradication following thermotherapy of shoot-tip cultures of pear. Plant Cell Tissue and Organ Culture 101: 229–235. DOI: https://doi.org/10.1007/s11240-010-9681-0
34. Ustaoglu B., Karaca M. 2010. The possible effects of temperature conditions on hazelnut farming in Turkey. Itudergisi 9 (3): 153–161.
35. Valasevich N., Cieślińska M., Kolbanova E. 2014. Molecular characterization of Apple mosaic virus isolates from apple and rose. European Journal of Plant Pathology 141: 839–845. DOI: https://doi.org/10.1007/s10658-014-0580-9
36. Vivek M., Modgil M. 2018. Elimination of viruses through thermotherapy and meristem culture in apple cultivar ‘Oregon Spur-II’. Virus Disease 29 (1): 75–82. DOI: https://doi.org/10.1007/s13337-018-0437-5
37. Wang Q.C., Cuellar W.J., Rajamäki M.L., Hiraka Y., Valkonen J.P.T. 2008. Combined thermotherapy and cryotherapy for efficient virus eradication: relation of virus distribution, subcellular changes, cell survival and viral RNA degradation in shoot tips. Molecular Plant Pathology 9: 237–250. DOI: https://doi.org/10.1111/j.1364-3703.2007.00456.x
38. Wang Q., Liu Y., Xie Y., You M. 2006. Cryotherapy of Potato Shoot Tips for Efficient Elimination of Potato Leafroll Virus (PLRV) and Potato Virus Y (PVY). Potato Research 49: 119–129. DOI: https://doi.org/10.1007/s11540-006-9011-4
39. Wang Q., Panis B., Engelmann F., Lambardi M., Valkonen J.P.T. 2009. Cryotherapy of shoot tips: a technique for pathogen elimination to produce healthy planting materials and prepare healthy plant genetic resources for cryopreservation. Annals of Applied Biology 154: 351–363. DOI: https://doi.org/10.1111/j.1744-7348.2008.00308.x
40. Wang Q.C., Valkonen J.P.T. 2008a. Elimination of two viruses which interact synergistically from sweetpotato by shoot tip culture and cryotherapy. Journal of Virological Methods 154: 135–145. DOI: https://doi.org/10.1016/j.jviromet.2008.08.006
41. Wang Q.C., Valkonen J.P.T. 2008b. Efficient elimination of Sweetpotato little leaf phytoplasma fromsweetpotato by cryotherapy of shoot tips. Plant Pathology 57: 338–347. DOI: https://doi.org/10.1111/j.1365-3059.2007.01710.x
42. Wang Q.C., Valkonen J.P.T. 2009. Cryotherapy of shoot tips: novel pathogen eradication method. Trends in Plant Science 14: 119–122. DOI: https://doi.org/10.1016/j.tplants.2008.11.010
43. Wang B., Wang R.R., Cui Z.H., Bi W.L., Li J.W., Li B.Q., Ozudogru E.A., Volk G.M., Wang Q.C. 2014. Potencial applications of cryogenic technologies to plant genetic improvement and pathogen eradication. Biotechnology Advances 32: 583–595. DOI: https://doi.org/10.1016/j.biotechadv.2014.03.003
44. Ward E., Foster S.J., Fraaije B.A. McCartney H.A. 2004. Plant pathogen diagnostics: immunological and nucleic acid-based approaches. Annals of Applied Biology 145: 1–16. DOI: https://doi.org/10.1111/j.1744-7348.2004.tb00354.x
Go to article

Authors and Affiliations

Ergun Kaya
1

  1. Molecular Biology and Genetics, Mugla Sitki Kocman University, Mugla, Turkey
Download PDF Download RIS Download Bibtex

Abstract

The aim of this work was to evaluate the relative gene expression levels of the cytokines IL- 1B, IL-8, IL-12, IFN-γ, IL-4, IL-10 and TGF-β in somatic milk cells of French Alpine breed, anestrous goats that were experimentally infected in the left mammary gland with Staphylococcus chromogenes during the lactation peak. Milk samples were obtained from both glands for 21 consecutive days post infection. Total RNA was extracted, and real-time PCR was conducted using primers specific to each cytokine. The relative RNA expression of the evaluated cytokines was determined by the comparative method 2-ΔΔCT, using milk from the right gland of the goats as a reference (control) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) as an endogenous control. According to the Wilcoxon test results, IL-1B and IL-12 expression levels showed significant differences compared to those in the control group (p<0.05) from 24 hours post infection until the end of lactation; on day three, IL1β, IL8, IL12 and TGF-β had a statistically significant change in expression with respect to those in the control group (p<0.05); closer to the end of the lactation period, there is no overexpression of the anti-inflammatory interleukins (IL-4 and TGF-β) which may reflect the effort of the host immune system to eradicate the microorganism from the mammary gland.

Go to article

Authors and Affiliations

R.A. Ruiz-Romero
D. Martínez-Gómez
R.A. Cervantes-Olivares
E. Díaz-Aparicio
A.E. Ducoing-Watty
Download PDF Download RIS Download Bibtex

Abstract

The use of lactoferrin (LF) and/or lactobacillus sp. (LB) to improve animal health and production has increased recently. However, information regarding the immune-modulatory role of LB supplementations either alone or in combination with LF in sheep remains unclear. Therefore, the present study was designed to evaluate the immune modulating properties and the antioxidant activity of supplementing commercially available LF and/or LB in healthy lambs. For this reason, twenty-four apparently healthy Ossimi lambs were used. After three weeks of acclimatization, the lambs were randomly allocated to four equal-sized groups and assigned to receive one of the following supplements: LB at a dose of ~ 1 g active ingredient/head (group 1), LF at a dose rate of 0.5 gm /head (group 2), a combination of both treatments using the same dosing regimens (group 3), and (group 4) received only 10 mL of isotonic saline and was considered as a control group. All supplements were given orally twice daily for 30 consecutive days. Blood samples were collected from each lamb before starting the experiment (T0) and two weeks (T15), and four weeks (T30) after giving supplements for hematological examinations, serum biochemical analyses, and RT-PCR assays. Our findings demonstrated that lambs receiving LB showed statistically significant (P<0.05) higher values of total leucocytes, lymphocytes and lysozyme activity than those receiving LF. In contrast, lambs that received LF had significantly (P< 0.05) higher values of serum catalase, nitric oxide and GSH with a significantly lower MDA level compared with those supplemented with LB. A combination of LF and LB supplementation elicited maximal up-regulation of Tollip, TLR4, IL-5, and IL-6 gene expression compared with other groups. The results suggest that bovine LF and or LB could be used as useful nutritional supplements to support the immune system in healthy lambs.

Go to article

Authors and Affiliations

M. El-Ashker
E. Risha
F. Abdelhamid
A. Ateya
Download PDF Download RIS Download Bibtex

Abstract

From the naturally infected cucumber plane spherical virus was isolated that mainly on basis of its serological properties has been identified as Tomato black ring virus (TBRV). Using antiserum against TBRV-ED for the specific crapping of virus followed by PCR test (immunocapture-RT-PCR) allowed co distinguish TBRV from related viruses, especially Beet ringspot virus (BRSV). Presence of as many as rwo satellite RNAs should be found as a unique feature of the cucumber isolace.
Go to article

Authors and Affiliations

Henryk Pospieszny
Magdalena Jończyk
Natasza Borodynko
Download PDF Download RIS Download Bibtex

Abstract

Onion yellow dwarf virus (OYDV), an aphid-borne potyvirus is one of the major viral pathogens of garlic causing significant yield losses worldwide. It is found almost everywhere in the world where Allium species is grown. The aim of this study was to test the presence of OYDV infection in garlic from Ethiopia. The presence of the virus was tested by Reverse transcription polymerase chain reaction (RT-PCR). The direct sequencing of the PCR product produced a sequence of 296 bp. Sequence analysis showed 89.27% sequence homology with an isolate from Australia (HQ258894) and 89.29% with an isolate from Spain (JX429964). A phylogenetic tree constructed with MEGA 7.0 revealed high levels of homology with various isolates of OYDV from all over the world and thus further confirmed the identity of the virus.

Go to article

Authors and Affiliations

Yohanis Kebede
Jyoti Singh
Shahana Majumder
ORCID: ORCID
Download PDF Download RIS Download Bibtex

Abstract

Dasheen mosaic virus (DsMV) is one of the most important viral pathogens of aroids and can cause major economic losses for ornamental crops. Here, we present the detection and molecular characterisation of DsMV isolates originating from Monstera adansonii plants in Poland. Moreover, the genetic variability of DsMV isolates was analyzed based on the coat protein gene ( CP) of the Polish and other DsMV isolates described to date. The presence of DsMV was confirmed by transmission electron microscopy (TEM) and reverse transcription polymerase chain reaction (RT-PCR) with specific, diagnostic primers in three out of ten examined plants. To obtain full-length sequences of CP, two pairs of primers were designed and used in the RT-PCR. The specificity of obtained products was confirmed by Sanger sequencing. The obtained sequences of CP were compared with 44 other DsMV sequences retrieved from the GenBank. Analyses revealed that DsMV population is very diverse. The variability of DsMV isolates was confirmed by low sequence identity and pervasive recombination events. The phylogenetic analysis was performed based on 37 non-recombinant CP sequences. The maximum-likelihood reconstruction revealed that the Polish isolates are distinct and grouped separately from other DsMV isolates. Due to the high genetic diversity, detecting the virus could be difficult. Nonetheless disease management relies strongly on a fast and accurate identification of the causal agent. To our knowledge this is the first report of DsMV in Poland.
Go to article

Authors and Affiliations

Agnieszka Taberska
1
Julia Minicka
1
Daria Budzyńska
1
Beata Hasiów-Jaroszewska
1
ORCID: ORCID

  1. Department of Virology and Bacteriology, Institute of Plant Protection – National Research Institute, Poznań, Poland
Download PDF Download RIS Download Bibtex

Abstract

Bovine parvovirus (BPV), bovine coronavirus (BCoV) and bovine parainfluenza virus (BPIV) are common etiologies causing gastrointestinal and respiratory diseases in dairy herds. However, there are few reports on the synchronous detection of BPV, BCoV and BPIV. The present article aimed to develop a quick and accurate RT-PCR assay to synchronously detect BPV, BCoV and BPIV based on their specific probes. One pair universal primers, one pair specific primers and one specific probe was designed and synthesized. After the concentrations of primer and probe and annealing temperature were strictly optimized, the specificity, sensitivity and repeatability of the established triplex probe qRT-PCR were evaluated, respectively. The results showed the recombinant plasmids of pMD18-T-BPV, pMD18-T-BCoV and pMD18-T-BPIV were 554bp, 699bp and 704bp, respectively. The optimal annealing temperature was set at 45.0°C for triplex qRT-PCR. The triplex probe qRT-PCR can only synchronously detect BPV, BCoV and BPIV. Detection sensitivities were 2.0×102, 2.0×102 and 2.0×101 copies/μL for BPV, BCoV and BPIV, being 1000-fold greater than that in the conventional PCR. Detection of clinical samples demon- strated that triplex probe qRT-PCR had a higher sensitivity and specificity. The intra-assay and inter-assay coefficient of variation were lower than 2.0%. Clinical specimens verified that the triplex qRT-PCR had a higher sensitivity and specificity than universal PCR. In conclusion, this triplex probe qRT-PCR could detect only BPV, BCoV and BPIV. Minimum detection limits were 2.0×102 copies/μL for BPV and BCoV, and 2.0×101 copies/μL for BPIV. The sensitivity of this triplex probe qRT-PCR was 1000-fold greater than that in the conventional PCR. The newly qRT-PCR could be used to monitor or differentially diagnose virus infection.

Go to article

Authors and Affiliations

J. Geng
Y. Niu
L. Wei
Q. Li
Z. Gong
S. Wei
Download PDF Download RIS Download Bibtex

Abstract

In performed experiments, insoluble polyvinylpolypyrrolidone, PVPP as an additive to the extraction buffer was used for isolation of total nucleic acids from hop plants and grapevine in order to obtain templates useful for detection ofHLVd and HSVd by means ofRT-PCR. Addition of2% of PVPP to the original GTC buffer (Chomczynski and Sacchi, 1987) appeared to be the most favorable. Due to PVPP addition, the protocol of extraction of nucleic acids was simplified by shortening of isolation time and reduction of expenses. However, application of the simplified method for obtaining of templates that guaranteed full repeatability of test results was limited to the spring and early summer season.
Go to article

Authors and Affiliations

Mieczysław Cajza
Wojciech Folkman
Download PDF Download RIS Download Bibtex

Abstract

In the spring of 2019, many plants, mainly winter wheat, were observed to have dwarfism and leaf yellowing symptoms. These plants from several regions of Poland were collected and sent to the Plant Disease Clinic of the Institute of Plant Protection – National Research Institute in Poznań to test for the presence of viral diseases. Double antibody sandwich enzyme-linked immunosorbent assay (DAS-ELISA) results showed numerous cases of Wheat dwarf virus (WDV) and a few cases of plant infections caused by Barley yellow dwarf viruses (BYDVs). WDV was detected in 163 out of 236 tested winter wheat plants (69.1%), in 10 out of 27 tested winter barley plants (37%) and in 6 out of 7 triticale plants (85.7%) while BYDVs were found, respectively, in 9.7% (23 out of 236) and in 18.5% (5 out of 27) of tested winter forms of wheat and barley plants. Infected plants came mainly from the regions of Lower Silesia and Greater Poland. Furthermore, individual cases of infections were also confirmed in the following districts: Lubusz, Opole, Silesia, Kuyavia-Pomerania and Warmia-Masuria. Results of Duplex-immunocapture-polymerase chain reaction (Duplex-IC-PCR) indicated the dominance of WDV-W form in wheat and WDV-B form in barley plants. Moreover, results of reverse transcription – polymerase chain reaction (RT-PCR) connected with restriction fragment length polymorphism (RFLP) analysis, performed for 17 BYDVs samples, revealed 8 BYDV-PAS, 4 BYDV-MAV and 2 BYDVPAV as well as the presence of two mixed infections of BYDV-MAV/-PAS and one case of BYDV-MAV/-PAV. Next, RT-PCR reactions confirmed single BYDV-GAV infection and the common presence of BYDV-SGV. To the best of our knowledge, in 2020 the viruses were not a big threat to cereal crops in Poland.

Go to article

Authors and Affiliations

Katarzyna Trzmiel
ORCID: ORCID

This page uses 'cookies'. Learn more