Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 8
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Soil Erodibility Factor (K-factor) is a crucial component of a widely used equation for soil erosion assessment known as the USLE (Universal Soil Loss Equation) or its revised version – RUSLE. It reflects the potential of the soil of being detached due to rainfalls or runoffs. So far, an extensive number of researches provide different approaches and techniques in the evaluation of K-factor. This study applies soil erodibility estimation in the soils of the South Caucasian region using soil data prepared by the International Soil Reference and Information Centre (ISRIC) with 250 m resolution, whereas the recent K-factor estimation implemented in the EU scale was with 500 m resolution. Soil erodibility was assessed using an equation involving soil pH levels. The study utilises Trapesoidal equation of soil data processing and preparation, as suggested by ISRIC, for various layers of surface soil data with up to 0-30 cm depth. Both usage of SoilGrids data and its processing as well as estimation of K-factor applying soil pH levels have demonstrated sufficient capacity and accuracy in soil erodibility assessment. The final output result has revealed the K-factor values varying from 0.037 and more than 0.060 t ha h/MJ mm within the study area.
Go to article

Authors and Affiliations

Nurlan Mammadli
1
ORCID: ORCID
Magsad Gojamanov
2

  1. Azerbaijan National Academy Sciences, Baku, Azerbaijan
  2. Baku State University, Baku, Azerbaijan
Download PDF Download RIS Download Bibtex

Abstract

The loss of soil quality due to erosion is a global problem, particularly affecting natural resources and agricultural pro-duction in Algeria. In this study, the Revised Universal Soil Loss Equation (RUSLE) is applied to estimate the risk of water erosion in the Ain Sefra arid watershed (Algeria). The coupling of this equation with Geographic Information Systems (GIS) allows to assess and map the soil loss rates. The land erosion is influenced by many control variables, such as the topographic factor of the terrain and the length of slope (LS factor), rainfall erosivity (R factor), sensitivity of soil to erosion (K factor), presence of vegetation (C factor) and the anti-erosion cultivation techniques (P factor). To calculate the average annual soil loss, these five factors were considered and multiplied in the RUSLE Equation. The result shows that the aver-age rate of soil loss is estimated at about 5.2 t·ha–1·y–1 over the whole watershed. This study is the first of its kind in the region and aims to assess the soil loss caused by water erosion processes in this arid zone. Consequently, it is essential to take real intervention measures in these upstream areas in order to combat this scourge, based on priorities ensuring the sustainable management of natural resources in the study area.
Go to article

Bibliography

ANRH 2020. Bulletins de Séries de données climatiques 1980–2020 [Climate Data Series Bulletins 1980–2020]. Agence Nationale des Ressources Hydrauliques Algérie pp. 30.
ARNOLD J.G., SRINIVASAN R., MUTTIAH R.S., WILLIAMS J.R. 1998. Large area hydrologic modeling and assessment part I: model development. Journal of the American Water Resources Association. Vol. 34(1) p. 73–89. DOI 10.1111/j. 1752-1688.1998.tb05961.x.
BELASRI A., LAKHOUILI A. 2016. Estimation of Soil Erosion Risk Using the Universal Soil Loss Equation (USLE) and Geo-Information Technology in Oued El Makhazine Watershed, Morocco. Journal of Geographic Information System. Vol. 8 p. 98–107. DOI 10.4236/jgis.2016.81010.
BENCHETTOUH A., KOURI L., JEBARI S. 2017. Spatial estimation of soil erosion risk using RUSLE/GIS techniques and practices conservation suggested for reducing soil erosion in Wadi Mina watershed (northwest, Algeria). Arabian Journal of Geosciences. Vol. 10(4). DOI 10.1007/s12517-017-2875-6.
BENKADJA R., BOUSSAG F., BENKADJA A. 2015. Identification et évaluation du risque d’érosion sur le bassin versant du K’sob (Est Algérien) [Identification and evaluation of erosion risk in the K'sob watershed (Eastern Algeria)]. Bulletin of Engineering Geology and the Environment. Vol. 74 p. 91–102. DOI 10.1007/s10064-014-0611-y.
BENSELAMA O., MAZOUR M., HASBAIA M., DJOUKBALA O., MOKHTARI S. 2018. Prediction of water erosion sensitive areas in Mediterranean watershed, a case study of Wadi El Maleh in north-west of Algeria. Environmental Monitoring and Assessment. Vol. 190(12), 735. DOI 10.1007/s10661-018-7117-1.
DJOUKBALA O., MAZOUR M., HASBAIA M., BENSELAMA O. 2018. Estimating of water erosion in semiarid regions using RUSLE equation under GIS environment. Environmental Earth Sciences. Vol. 77, 345. DOI 10.1007/s12665-018-7532-1.
DPSB 2016. Monographie de la Wilaya de Naâma [Monograph of the Wilaya of Naâma]. Direction de la programmation et du Suivi Budgétaires de La Wilaya De Naâma pp. 164.
FAO 2015. Status of the world’s soil resources (SWSR) – Main report. Soil change: Impacts and responses. Chapt. 7. The impact of soil change on ecosystem services. Rome. Food and Agriculture Organization of the Unites Nations. ISBN 978-92-5-109004-6 pp. 222.
FAO/IIASA/ISRIC/ISSCAS/JRC 2012. Harmonized world soil database version 1.2 [online]. Rome Food and Agriculture Organization of the Unites Nations, Laxenburg, International Institute for Applied Systems Analysis. [Access 12.02.2019]. Available at: http://webarchive.iiasa.ac.at/Research/LUC/External-World-soil-database/HTML/HWSD_Data.html?sb=4
GESSESSE B., BEWKET W., BRÄUNING A. 2015. Model-based characterization and monitoring of runoff and soil erosion in response to land use/land cover changes in the Modjo watershed, Ethiopia. Land Degradation and Development. Vol. 26 p. 711–724. DOI 10.1002/ldr.2276.
HASBAIA M., DOUGHA M., BENJEDOU F. 2017. Erosion sensitivity mapping using a multi-criteria approach under GIS environment the case of the semiarid Hodna Basin in Central Algeria. International Journal of Water Resources and Arid Environments. Vol. 6(1) p. 13–19.
HONORATO R., BARRALES L., PENA I., BARRERA F. 2001. Evaluacion del modelo USLE en la estimacion de la erosion en seis localidades entre la IV y IX Region de Chile [Evaluation of the USLE model in the estimation of erosion in six locations between the IV and IX Region of Chile]. Ciencia e Investigacion Agraria. Vol. 28(1) p. 7–14.
KALMAN R. 1967. Le facteur climatique de l’érosion dans le bassin de Sebou [The climatic factor of erosion in the Sebou basin. Sebou Project, Report]. Projet Sebou, Rapport. Ronéo pp. 40.
KOUSSA M., BOUZIANE M.T. 2018. Apport du SIG a la cartographie des zones à risque d’érosion hydrique dans la région de Djelfa, Algérie. Lebanese Science Journal. Vol. 19. No. 1 p. 31–46. DOI 10.22453/LSJ-019.1.031-046.
KOUSSA M., BOUZIANE M.T. 2019. Estimation des paramètres de l'érosion hydrique par Approche SIG/USLE : cas du bassin versant de l'Oued Arab (région de Khenchela, Nord-Est de l’Algérie) [Estimation of water erosion parameters by GIS/USLE approach: Case of the Oued Arab watershed (Khenchela region, North-East Algeria)]. Agriculture and Forestry Journal. Vol. 3(1) p. 36–45. DOI 10.5281/zenodo. 3239252.
MAZOUR M., ROOSE E. 2002. Influence de la couverture végétale sur le ruissellement et l’érosion des sols sur parcelles d’érosion dans des bassins versants du Nord-Ouest de l’Algérie. En : Techniques traditionnelles de GCES en milieu méditerranéen [Influence of vegetation cover on runoff and soil erosion on erosion plots in watersheds in north-western Algeria. In: Traditional techniques of GCES in the Mediterranean environment]. Eds. E. Roose, M. Sabir, G. De Noni. Bulletin – Réseau Erosion. Vol. 21 p. 320–330.
NEARING M., FOSTER G., LANE L., FINKNER S. 1989. A process-based soil erosion model for USDA-Water Erosion Prediction Project technology. Transactions for the ASAE. Vol. 32(5) p. 1587–1593. DOI 10.13031/2013.31195.
NEITSCH S., ARNOLD J., KINIRY J., WILLIAMS J. 2011. Soil & water assessment tool theoretical documentation version 2009. Texas Water Resources Institute Technical Report. No. 406 pp. 647.
PHAM T.G., DEGENER J., KAPPAS M. 2018. Integrated universal soil loss equation (USLE) and Geographical Information System (GIS) for soil erosion estimation in A Sap basin: Central Vietnam. International Soil and Water Conservation Research. Vol. 6(2) p. 99–110. DOI 10.1016/j.iswcr.2018.01.001.
RANGO A., ARNOLDUS H.M.J. 1977. Applications de la télédé¬tection a l'amenagement des bassins versants. En : Aménagement des bassins versants [Applications of remote sensing for watershed management. In: Watershed management] [online]. Cahiers techniques de la FAO. Rome. FAO p. 1–11. [Access 12.02.2019]. Available at: http://www.fao.org/3/AD071F/AD071f00.htm
RENARD K.G., FOSTER G.R., WEESIES G.A., MCCOOL D.K., YODER D.C. 1997. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). Agricultural Handbook. No. 703 pp. 385.
RODRIGUEZ J., SUÁREZ M. 2010. Comparison of mathematical algorithms for determining the slope angle in GIS environment. Aqua-LAC. Vol. 2. No. 2 p. 78–82.
SEMWAL P., KHOBRAGADE S.D., NAINWAL H.C. 2017. Modelling of recent erosion rates in a lake catchment in the North-Western Siwalik Himalayas. Environmental Processes. Vol. 4 p. 355–374. DOI 10.1007/s40710-017-0234-y.
SHIN G.J. 1999. The analysis of soil erosion analysis in watershed using GIS. Ph.D. Thesis. Chuncheon. Gang-won National University. South Korea.
SOUIDI Z., HAMIMED A., DONZE F. 2014. Cartographie du risque de dégradation des terres en région semi-aride: Cas des Monts de Beni Chougrane dans le Tell Occidental Algérien [Mapping the risk of land degradation in the semi-arid region: Case of the Beni Chougrane Mountains in the Algerian Western Tell]. Geo-Eco-Trop. No. 38 p. 85–102.
STONE R.P., HILBORN D. 2000. Équation universelle des pertes en Terre (USLE) [Universal Soil Loss Equation (USLE)]. Ontario. Ministère de l’agriculture, de l’alimentation et des affaires rurales. Fiche technique. Commande. No. 00-002 pp. 8.
THIAW I., HONORE D. 2017. Mapping of soil erosion risk in the Diarha watershed using RUSLE, RS and GIS. American Journal of Remote Sensing. Vol. 5. No. 4 p. 30–42. DOI 10.11648/j.ajrs.20170504.11.
TOUBAL A.K., ACHITE M., OUILLON S., DEHNI A. 2018. Soil erodibility mapping using the RUSLE model to prioritize erosion control in the Wadi Sahouat basin, north-west of Algeria. Environmental Monitoring and Assessment. Vol. 190, 210. DOI 10.1007/s10661-018-6580-z.
WOLDEMARIAM G.W., IGUALA A.D., TEKALIGN S., REDDY R.U. 2018. Spatial modeling of soil erosion risk and its implication for conservation planning: The case of the Gobele Watershed, East Hararghe Zone, Ethiopia. Land. Vol. 7(1), 25. DOI 10.3390/land7010025.
WISCHMEIER W.H., SMITH D.D. 1978. Predicting rainfall erosion losses – A guide to conservation planning. Supersedes Agriculture Handbook. No. 282. Predicting rainfall-erosion losses from cropland east of the Rocky Mountains. Agriculture Handbook. No. 537. Washington, DC. USDA pp. 58.
Go to article

Authors and Affiliations

Ahmed Melalih
1 2
ORCID: ORCID
Mohamed Mazour
3

  1. Abou Bakr Belkaïd University, Faculty of Natural and Life Sciences and theUniverse, BP 230, New campus, Tlemcen, 13000 Algeria
  2. University Center of Ain Temouchent Belhadj Bouchaib, Laboratory of Applied Hydrology and Environment (LHYDENV), Ain Temouchent, Algeria
  3. University Center of Ain Temouchent Belhadj Bouchaib, Institute of Science and Technology, Ain Temouchent, Algeria
Download PDF Download RIS Download Bibtex

Abstract

Water erosion is a critical issue for Morocco, especially in its semi-arid regions, where climatic and edaphic conditions only allow erratic soil formation and vegetation growth. Therefore, water erosion endangers human activity both directly (loss of arable land, landslides, mudflows) and indirectly (siltation of dams, river pollution). This study is part of the Kingdom’s effort to assess the risk of water erosion in its territory. It is dedicated to the Bin El-Ouidane dam water catchment, one of the biggest water storage facilities in the country, located in the High Atlas Mountains. The poorly developed soils are very sensitive to erosion in this mountainous area that combines steep slopes and sparse vegetation cover. The calculation of soil losses is carried out with the RUSLE model and corrected by estimating areas of deposition based on the unit stream power theory. This method produces a mean erosion rate of around 6.3 t·ha -1·y -1, or an overall annual loss of 4.1 mln t, consistently with the siltation rate of the dam. Primary risk areas (erosion rates > 40 t·ha -1·y -1) account for 54% of the total losses, while they cover only 7% of the catchment. This distribution of the soil losses also shows that the erosion risk is mainly correlated to slope, directing the means of control toward mechanical interventions.
Go to article

Authors and Affiliations

Wafae Nouaim
1
ORCID: ORCID
Dimitri Rambourg
2
ORCID: ORCID
Abderrazak El Harti
1
ORCID: ORCID
Ettaqy Abderrahim
3
ORCID: ORCID
Mohamed Merzouki
1
ORCID: ORCID
Ismail Karaoui
1
ORCID: ORCID

  1. University Sultan Moulay Slimane, Faculty of Sciences and Techniques, Team of Remote Sensing and GIS Applied to Geosciences and Environment, Av Med V, BP 591, Beni-Mellal 23000, Morocco
  2. Université de Strasbourg, CNRS/EOST, ITES UMR 7063, Institut Terre et Environnement de Strasbourg, France
  3. University Sultan Moulay Slimane, Faculty of Sciences and Techniques, Environmental, Ecological and Agro-industrial Engineering Laboratory, Beni-Mellal, Morocco
Download PDF Download RIS Download Bibtex

Abstract

Soil erosion has been severely affecting soil and water resources in semi-arid areas like the Mediterranean. In Morocco, this natural process is accelerated by anthropogenic activities, such as unsustainable soil management, overgrazing, and deforestation. With a drainage area of 395,600 ha, the Bouregreg River Watershed extends from the Middle Atlas Range (Jebel Mtourzgane) to the Sidi Mohamed Ben Abdellah (SMBA) dam reservoir south-east of Rabat. Its contrasted eco-geomorphological landscapes make it susceptible to unprecedented soil erosion due to climate change. Resulting changes in erosive dynamics led to huge amounts of solid loads transported to the catchment outlet and, thus, jeopardised the SMBA dam lifespan due to siltation.
The research aims to quantify the average annual soil losses in this watershed using the Revised Universal Equation of Soil Losses (RUSLE) within a GIS environment. To highlight shifts in land use/land cover patterns and their effects on erosional severity, we have resorted to remote sensing through two Landsat 8 satellite images captured in 2004 and 2019. The C factor was combined with readily available local data regarding major erosion factors, e.g. rainfall aggressiveness ( R), soil erodibility ( K), topography ( LS), and conservation practices ( P). The helped to map the erosion hazard and determine erosion prone areas within the watershed where appropriate water and conservation measures are to be considered. Accordingly, from 2004 to 2019, average annual soil losses increased from 11.78 to 18.38 t∙ha –1∙y –1, as the watershed area affected by strong erosion (>30 t∙ha –1∙y –1) evolved from 13.57 to 39.39%.

Go to article

Authors and Affiliations

Fouad Moudden
1
Mohammed El Hafyani
1
Anas El Ouali
2
Allal Roubil
1
Abdelhadi El Ouali
1
ORCID: ORCID
Ali Essahlaoui
1
ORCID: ORCID
Youssef Brouziyne
3

  1. Moulay Ismail University, Faculty of Sciences, Department of Geology, Laboratory of Geoengineering and Environment, Research Group “Water Sciences and Environment Engineering, Zitoune, Meknes BP11201, Morocco
  2. Sidi Mohamed Ben Abdellah University, Faculty of Science and Technology, Functional Ecology and Environmental Engineering Laboratory, Fez, Morocco
  3. Mohammed VI Polytechnic University, International Water Research Institute, Ben Guerir, Morocco
Download PDF Download RIS Download Bibtex

Abstract

Soil erosion in the Nangka watershed has always been a matter of concern. Over the last decade, soil erosion has led to continuous environmental problems. A thorough examination of the extent of the problem was required to identify an appropriate soil conservation strategy within the watershed. This study was conducted to observe erosion rates and map out the erosion hazard level. Erosion predictions were analysed by using the Revised Universal Soil Loss Equation (RUSLE) model with the help of ArcGIS software. RUSLE was selected because of its quantitative ability to estimate average annual soil erosion and its compatibility with the GIS interface. The potential hazard of soil erosion was classified and ranked into five class categories as set by the national authority. The results reveal that the Nangka watershed is prone to soil erosion with the annual average values ranging from 1.33 Mg·ha –1·y –1 to 2472.29 Mg·ha –1·y –1. High soil erosion rates of 9.8% are in severe (class IV) and very severe (class V) conditions, primarily in the upper course of the watershed. The low annual average of soil erosion (class I and class II), which accounted for 75.95% of the total erosion, mostly took place in the steepness below 35%. The remaining area of 14.25% within the watershed is in moderate condition (class III). It is expected that the results of this study will help the authority in the implementation of soil conservation measures.
Go to article

Authors and Affiliations

Yusron Saadi
1
ORCID: ORCID
Sus Mardiana
2
Eko Pradjoko
1
ORCID: ORCID

  1. University of Mataram, Faculty of Engineering, Department of Civil Engineering, Center for Disaster Risk Management, Majapahit St, No. 62, Mataram, NTB, 83125, Indonesia
  2. Nusa Tenggara I River Basin Organisation, Mataram, NTB, Indonesia

This page uses 'cookies'. Learn more