Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 11
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents results of a research on the possibilities of applying 3D printed casting models for small production series as alternative to traditional tooling production on automated DisaMatch mould production lines. The main task was to verify and compare the dimensions of the 3D printed models before and after moulding process. The paper discusses main advantages and disadvantages of the 3D printing methods used like FDM (Fused Deposition Modeling)/FFF (Fused Filament Fabrication), SLA (stereolitography) and DPP (Daylight Polymer Printing). Measurement of casting model outside dimension change resulting from moulding sand friction on their surface was made with the use of GOM INSPECT software on the basis of 3D scans made with ATOS TripleScan optical scanner. Hardness of 3D printed models made of ABS, Z-ULTRAT, three different photopolymer resins (from FormLab and Liquid Crystal companies) was verified. The result of the research printed models usability for the foundry industry was presented.

Go to article

Authors and Affiliations

Ł. Bernat
A. Kroma
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the results of research work on the development of a rapidprototyping test stand for testing: servo control algorithms, trajectory generation, algorithms for increasing overall quality of the feed-drive modules within two axis (X-Y) table of the milling machine. Open architecture interface of the prepared control system lets the potential user test functionality of integration of diagnostic tools within the motion controller - directly, without taking into account communication with top-level CNC system.

Go to article

Authors and Affiliations

Krzysztof Pietrusewicz
Michał Bonisławski
Rafał Pajdzik
Download PDF Download RIS Download Bibtex

Abstract

This article presents the preparation of composite casts made using the technology of precise casting by the method of melted models. The composite was reinforced with the ceramic sinter from Al2O3 particle shaped in a printed polystyrene female mould, which was fired together with precured ceramics. The resulting ceramic preform, after being saturated with paraffin and after the filling system is installed, was filled with liquid moulding sand and fired together with the mould. The reinforcement was saturated by means of the counter-pressure exerting action on the metal column, being a resultant of pressures inside and outside the chamber. The preliminary assessment showed no apparent defects in the shape of the cast. The casting was measured and the figures were compared with the dimensions of the matrix in which the reinforcing preform was made, the preform after firing and after saturation with paraffin. The results were presented in a table and dimensional deviations were determined. The composite casting was subjected to metallographic tests, which excluded any porous defects or damage to the reinforcement. It can therefore be said that, according to the predictions resulting from the previous calculations, the pressure values used allowed for complete filling of the reinforcement capillaries. The proposed method is therefore suitable for the preparation of precision composite castings with complex shapes.

Go to article

Authors and Affiliations

P. Szymański
K. Gawdzińska
D. Nagolska
Download PDF Download RIS Download Bibtex

Abstract

The article refers to the idea of using the software defined network (SDN) as an effective hardware and software platform enabling the creation and dynamic management of distributed ICT infrastructure supporting the rapid prototyping process. The authors proposed a new layered reference model remote distributed rapid prototyping that allows the development of heterogeneous, open systems of rapid prototyping in a distributed environment. Next, the implementation of this model was presented in which the functioning of the bottom layers of the model is based on the SDN architecture. Laboratory tests were carried out for this implementation which allowed to verify the proposed model in the real environment, as well as determine its potential and possibilities for further development. Thus, the approach described in the paper may contribute to the development and improvement of the efficiency of rapid prototyping processes which individual components are located in remote industrial, research and development units. Thanks to this, it will be possible to better integrate production processes as well as optimize the costs associated with prototyping. The proposed solution is also a response in this regard to the needs of industry 4.0 in the area of creating scalable, controllable and reliable platforms.

Go to article

Authors and Affiliations

D. Mazur
A. Paszkiewicz
M. Bolanowski
G. Budzik
M. Oleksy
Download PDF Download RIS Download Bibtex

Abstract

The present paper is concerned with the practical interconnection between virtual engineering tools and additive model manufacturing technologies and the subsequent production of a ceramic shell by rapid prototyping with the use of Cyclone technology to produce the aluminium casting prototype. Prototypes were developed as part of the student formula project, where several parts originally produced by machining were replaced by castings. The techniques of topological optimization and the combination with the tools of the numerical simulation were used to optimise the virtual prototype before a real production of the first prototype. 3D printing of wax pattern ensured direct and fast assembly of the cluster without any additional operations and troubles during dewaxing. The shell was manufactured in 6 hours thanks to a system of quick-drying of individual layers of ceramic shell. It has been verified that the right combination of individual virtual tools with the rapid prototyping can shorten the development time and delivery of the first prototypes from a few months to a few weeks.
Go to article

Bibliography

[1] Xiao, A., Bryden, K.M. (2004). Virtual engineering: A vision of the next-generation product realization using virtual reality technologies. Proceedings of the ASME 2004 Design Engineering Technical Conferences – DETC’04, 28 September – 2 October, pp 1-9.Salt Lake City, Utah, #57698.
[2] Pekkola, S. & Jäkälä, M. (2007) From technology engineering to social engineering: 15 years of research on virtual worlds. The DATA BASE for Advances in Information Systems. 38(4), 11-16.
[3] Bao, Jin, J.S., Gu, Y., Yan, M.Q. & Ma, J.Q. (2002). Immersive virtual product development. Journal of Materials Processing Technology. 129(1-3), 592-596. DOI: 10.1016/S0924-0136(02)00655-6.
[4] Van der Auweraer, H. (2010). Virtual engineering at work: The challenges for designing intelligent products. In: Proceedings of the TMCE 2010 Symposium, April 12-16, (pp. 3-18), Ancona, Italy.
[5] Stawowy, A., Wrona, R., Brzeziński, M. & Ziółkowski, E. (2013). Virtual factory as a method of foundry design and production management. Archives of Foundry Engineering. 13(1), 113-118. DOI: 10.2478/afe-2013-0022
[6] Dépincé, P., Chablat, D., Woelk, P.O. (2004) Virtual manufacturing: tools for improving design and production, Dans International Design Seminar - CIRP International Design Seminar, Egypt.
[7] Kumar, P., Ahuja, I.P.S. & Singh, R. (2013). Framework for developing a hybrid investment casting process. Asian Review of Mechanical Engineering, 2(2), 49-55.
[8] Kügelgen, M. (2008). From 7 days to 7 hours – Investment casting parts within the shortest time, 68th WFC - World Foundry Congress, 7th - 10th February, 2008, (pp. 147-151).

Go to article

Authors and Affiliations

V. Krutiš
1
ORCID: ORCID
P. Šprta
1
V. Kaňa
1
ORCID: ORCID
A. Zadera
1
J. Cileček
2

  1. Brno University of Technology, Czech Republic
  2. Alucast s.r.o., Czech Republic
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the properties of plastics under the trade names of PMMA and Midas, and of Formowax, Romocast 305 and Romocast 930 casting waxes. Their effect on the quality of foundry patterns used in the manufacture of ceramic moulds for precision casting is also discussed. From the selected materials for foundry patterns, samples were made for testing using the following methods: (i) 3D printing in the case of plastics, and (ii) conventional method based on tooling in the form of metal moulds (dies) in the case of casting waxes.

The most important physico-mechanical properties of materials for foundry patterns were determined, i.e. linear shrinkage, softening temperature, relative elongation and coefficient of thermal linear expansion. Bending tests were carried out on samples of patterns printed and made in metal moulds, including determination of the surface roughness of patterns.

After the process of melting out patterns from the cavities of ceramic moulds in an autoclave, the degree of their melting out was visually assessed (i.e. the residues from pattern removal were evaluated). The ash content after burning out of foundry patterns was also determined. The conducted tests allowed comparing the important parameters of materials used for foundry patterns and assessing the suitability of selected plastics as a material for foundry patterns used in the manufacture of high-quality precision castings.

Go to article

Authors and Affiliations

A. Dydak
M. Książek
Download PDF Download RIS Download Bibtex

Abstract

Three-dimensional (3D) printed model of the renal vasculature shows a high level of accuracy of subsequent divisions of both the arterial and the venous tree. However, minor artifacts appeared in the form of oval endings to the terminal branches of the vascular tree, contrary to the anticipated sharply pointed segments. Unfortunately, selective laser sintering process does not currently permit to present the arterial, venous and urinary systems in distinct colors, hence topographic relationship between the vas-cular and the pelvicalyceal systems is difficult to attain. Nonetheless, the 3D printed model can be used for educational purposes to demonstrate the vast renal vasculature and may also serve as a reference model whilst evaluating morphological anomalies of the intrarenal vasculature in a surgical setting.
Go to article

Bibliography

1. Djonov V., Burri P.H.: Corrosion cast analysis of blood vessels. In Methods in Endothelial Cell Biology. Springer, Berlin, Heidelberg 2004; 357–369.
2. Mansur D.I., Karki S., Mehta D.K., Shrestha A., Dhungana A.: A Study on Variations of Branching Pattern of Renal Artery with its Clinical Significance. Kathmandu Univ Med J. 2019; 17 (66): 136–140. PMID: 32632062.
3. Wróbel G.: Visualization of blood vessels by corrosion technique. J Educ Health Sport. 2017; 7 (9): 283–291.
4. Rueda Esteban R.J., López McCormick J.S., Martínez Prieto D.R., Hernández Restrepo J.D.: Corrosion casting, a known technique for the study and teaching of vascular and duct structure in anatomy. Int J Morphol. 2017; 34 (3): 1147–1153. https://doi.org/10.4067/s0717-95022017000300053
5. Musiał A., Gryglewski R., Kielczewski S., Loukas M., Wajda J.: Formalin use in anatomical and histological science in the 19th and 20th centuries. Folia Med Cracov. 2016; 56 (3): 31–40. PMID: 28275269.
6. Bernhard J.C., Isotani S., Matsugasumi T., Duddalwar V., Hung A.J., Suer E., Baco E., Satkunasivam R., Djaladat H., Metcalfe C., Hu B., Wong K., Park D., Nguyen M., Hwang D., Bazargani S.T., de Castro Abreu A.L., Aron M., Ukimura O., Gill I.S.: Personalized 3D printed model of kidney and tumor anatomy: a useful tool for patient education. World J Urol. 2016; 34 (3): 337–345. doi: 10.1007/s00345-015-1632-2. PMID: 26162845.
7. Bücking T.M., Hill E.R., Robertson J.L., Maneas E., Plumb A.A., Nikitichev D.I.: From medical imaging data to 3D printed anatomical models. PLoS One. 2017; 12 (5): e0178540. doi: 10.1371/journal.pone.0178540. PMID: 28562693; PMCID: PMC5451060.
8. Marro A., Bandukwala T., Mak W.: Three-Dimensional Printing and Medical Imaging: A Review of the Methods and Applications. Curr Probl Diagn Radiol. 2016; 45 (1): 2–9. doi: 10.1067/j.cpradiol.2015.07.009. PMID: 26298798.
9. Holzem K.M., Jayarajan S., Zayed M.A.: Surgical planning with three-dimensional printing of a complex renal artery aneurysm. J Vasc Surg Cases Innov Tech. 2018; 4 (1): 19. doi: 10.1016/j.jvscit.2016.08.004. PMID: 29541692.
10. Lin J.C., Myers E.: Three-dimensional printing for preoperative planning of renal artery aneurysm surgery. J Vasc Surg. 2016; 64 (3): 810. doi: 10.1016/j.jvs.2015.12.061. PMID: 27565599.
11. Javan R., Herrin D., Tangestanipoor A.: Understanding Spatially Complex Segmental and Branch Anatomy Using 3D Printing: Liver, Lung, Prostate, Coronary Arteries, and Circle of Willis. Acad Radiol. 2016; 23 (9): 1183–1189. doi: 10.1016/j.acra.2016.04.010. PMID: 27283072.
12. McMenamin P.G., Quayle M.R., McHenry C.R., Adams J.W.: The production of anatomical teaching resources using three-dimensional (3D) printing technology. Anat Sci Educ. 2014; 7 (6): 479–486. doi: 10.1002/ase.1475. PMID: 24976019.
13. Skrzat J., Zdilla M.J., Brzegowy P., Hołda M.: 3D printed replica of the human temporal bone intended for teaching gross anatomy. Folia Med Cracov. 2019; 59 (3): 23–30. doi: 10.24425/fmc.2019.131133. PMID: 31891357.
14. Augustyn M.: Variation of the calicopelvic system of the human kidney in ontogenetic development. Folia Morphol (Warsz). 1978; 37 (2): 157–165. PMID: 308905.
15. Brödel M.: The intrinsic blood vessels of the kidney. Bull. Johns Hopkins Hosp. 1901; 12: 10–18.
16. Ajmani M.L., Ajmani K.: To study the intrarenal vascular segments of human kidney by corrosion cast technique. Anat Anz. 1983; 154 (4): 293–303. PMID: 6660543.
17. Garg A.K., Garg N., Kaushik R.K., Garg A.: A Review of Vascular Pattern of Human Kidney by Corrosion Cast Technique. Medico-Legal Update. 2012; 12 (2): 22–25.
18. Longia G.S., Kumar V., Gupta C.D.: Intrarenal arterial pattern of human kidney-corrosion cast study. Anat Anz. 1984; 155 (1–5): 183–194. PMID: 6721181.
19. Botsch M., Kobbelt L., Pauly M., Alliez P., Lévy B.: Polygon mesh processing. 2010; AK Natic Ltd, Massachusetts / CRC Press.
20. Cignoni P., Callieri M., Corsini M., Dellepiane M., Ganovelli F., Ranzuglia G.: Meshlab: an open- source mesh processing tool. In Eurographics Italian chapter conference. 2008; 29–136.
Go to article

Authors and Affiliations

Janusz Skrzat
1
Katarzyna Heryan
2
Jacek Tarasiuk
3
Sebastian Wroński
3
Klaudia Proniewska
4
Piotr Walecki
4
Michał Zarzecki
1
Grzegorz Goncerz
1
Jerzy Walocha
1

  1. Jagiellonian University Medical College, Department of Anatomy, Kraków, Poland
  2. AGH University of Science and Technology, Department of Measurement and Electronics, Kraków, Poland
  3. AGH University of Science and Technology, Department of Condensed Matter Physics, Kraków, Poland
  4. Jagiellonian University Medical College, Department of Bioinformatics and Telemedicine, Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The research focused on the production of prototype castings, which is mapped out starting from the drawing documentation up to theproduction of the casting itself. The FDM method was applied for the production of the 3D pattern. Its main objective was to find out whatdimensional changes happened during individual production stages, starting from the 3D pattern printing through a silicon mouldproduction, wax patterns casting, making shells, melting out wax from shells and drying, up to the production of the final casting itself. Five measurements of determined dimensions were made during the production, which were processed and evaluated mathematically. A determination of shrinkage and a proposal of measures to maintain the dimensional stability of the final casting so as to meet requirements specified by a customer were the results.
Go to article

Authors and Affiliations

M. Macků
M. Horáček
Download PDF Download RIS Download Bibtex

Abstract

This paper shows the results of studying the technology of manufacturing cortical electrode-instruments (EI) with the use of indirect

methods of the Rapid Prototyping technology. Functional EI prototypes were made by layered synthesis of the photopolymer material with

the use of the stereolithography technology (SLA - Stereo Lithography Apparatus). The article is focused on two methods of indirect EI

manufacturing. One of the EI prototypes was used for making a molded wax model for hot investment casting, followed by applying

copper coating. The second prototype was used for applying copper plating to a prepared current-conductive layer. As a result of EDMing

a steel workpiece, both EIs reached the desired depth, which is 1 mm. The copper plating applied to the EI preserves its integrity. Through

the use of the casting technology, there is a possibility to cut the economic costs by 35%. Using a prototype with preliminarily applied

conductive coating makes it possible to make geometrically-complex EIs.

Go to article

Authors and Affiliations

A.A. Shumkov
T.R. Ablyaz
K.R. Muratov
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the use of rapid prototyping technology of three dimensional printing (3DP) to make a prototype shell casting mold. In

the first step, for identification purposes, a mold was prepared to enable different alloys to be cast. All molds being cast were designed in a

universal CAD environment and printed with the zp151 composite material (Calcium sulfate hemihydrate) with a zb63 binder (2-

pyrrolidone). It is designated to be used to prepare colourful models presenting prototypes or casting models and molds. The usefulness of

3DP technology for use with copper alloys, aluminum and zinc was analyzed. The strength of the mold during casting was assumed as a

characteristic comparative feature in the material resistance to high temperature, the quality of the resulting casting and its surface

roughness. Casting tests were carried out in vacuum – pressure casting. The casting programs applied, significantly increased the quality of

castings and enabled precise mold submergence. Significant improvement was noted in the quality compared to the same castings obtained

by gravity casting.

Go to article

Authors and Affiliations

G. Skorulski
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the development procedures for both virtual 3D-CAD and material models of fractured segments of human spine formulated with the use of computer tomography (CT) and rapid prototyping (RP) technique. The research is a part of the project within the framework of which a database is developed, comprising both 3D-CAD and material models of segments of thoracic-lumbar spine in which one vertebrae is subjected to compressive fracture for a selected type of clinical cases. The project is devoted to relocation and stabilisation procedures of fractured vertebrae made with the use of ligamentotaxis method. The paper presents models developed for five patients and, for comparison purposes, one for a normal spine. The RP material models have been built basing on the corresponding 3D-CAD ones with the use of fused deposition modelling (FDM) technology. 3D imaging of spine segments in terms of 3D-CAD and material models allows for the analysis of bone structures, classification of clinical cases and provides the surgeons with the data helpful in choosing the proper way of treatment. The application of the developed models to numerical and experimental simulations of relocation procedure of fractured vertebra is planned.

Go to article

Authors and Affiliations

Anna Dąbrowska-Tkaczyk
Anna Floriańczyk
Roman Grygoruk
Konstanty Skalski
Piotr Borkowski

This page uses 'cookies'. Learn more