Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The wear behaviour of Cr3C2-25% NiCr laser alloyed nodular cast iron sample were analyzed using a pin-on-disc tribometer. The influence of sliding velocity, temperature and load on laser alloyed sample was focused and the microscopic images were used for metallurgical examination of the worn-out sites. Box-Behnken method was utilised to generate the mathematical model for the condition parameters. The Response Surface Methodology (RSM) based models are varied to analyse the process parameters interaction effects. Analysis of variance was used to analyse the developed model and the results showed that the laser alloyed sample leads to a minimum wear rate (0.6079×10–3 to 1.8570×10–3 mm3/m) and coefficient of friction (CoF) (0.43 to 0.53). From the test results, it was observed that the experimental results correlated well with the predicted results of the developed mathematical model.

Go to article

Authors and Affiliations

N. Jeyaprakash
M. Duraiselvam
R. Raju
Download PDF Download RIS Download Bibtex

Abstract

The development of industry is determined by the use of modern materials in the production of parts and equipment. In recent years, there has been a significant increase in the use of nickel-based superalloys in the aerospace, energy and space industries. Due to their properties, these alloys belong to the group of materials hard-to-machine with conventional methods. One of the non-conventional manufacturing technologies that allow the machining of geometrically complex parts from nickel-based superalloys is electrical discharge machining. The article presents the results of experimental investigations of the impact of EDM parameters on the surfaces roughness and the material removal rate. Based on the results of empirical research, mathematical models of the EDM process were developed, which allow for the selection of the most favourable processing parameters for the expected values of the surface roughness Sa and the material removal rate.

Go to article

Bibliography

[1] C.P. Mohanty, S.S. Mahapatra, and M.R. Singh. An experimental investigation of machinability of Inconel 718 in electrical discharge machining. Procedia Materials Science, 6:605–611, 2014. doi: 10.1016/j.mspro.2014.07.075.
[2] S. Skoczypiec. Discussion of ultrashort voltage pulses electrochemical micromachining: a review. The International Journal of Advanced Manufacturing Technology, 87(1-4):177–187, 2016. doi: 10.1007/s00170-016-8392-z.
[3] A. Ruszaj, J. Gawlik, and S. Skoczypiec. Electrochemical machining – special equipment and applications in aircraft industry. Management and Production Engineering Review, 7(2):34–41, 2016. doi: 10.1515/mper-2016-0015.
[4] B.K. Sahu, S. Datta, and S.S. Mahapatra. On electro-discharge machining of Inconel 718 super alloys: an experimental investigation. Materials Today: Proceedings, 5(2):4861–4869, 2018. doi: 10.1016/j.matpr.2017.12.062.
[5] L. Li, Z.Y. Li, X.T. Wei, and X. Cheng. Machining characteristics of Inconel 718 by sinking-DM and wire-EDM. Materials and Manufacturing Processes, 30(8):968–973, 2015 doi: 10.1080/10426914.2014.973579.
[6] R. Świercz and D. Oniszczuk-Świercz. Influence of electrical discharge pulse energy on the surface integrity of tool steel 1.2713. Proceedings of the 26th International Conference on Metallurgy and Materials, pages 1450–1455, Brno, Czech Republic, 24–26 May 2017. WOS:000434346900234.
[7] M. Kunieda, B. Lauwers, K.P. Rajurkar, and B.M. Schumacher. Advancing EDM through fundamental insight into the process. CIRP Annals – Manufacturing Technology, 54(2):64–87, 2005. doi: 10.1016/S0007-8506(07)60020-1.
[8] B. Izquierdo, J.A. Sánchez, S. Plaza, I. Pombo, and N. Ortega. A numerical model of the EDM process considering the effect of multiple discharges. International Journal of Machine Tools and Manufacture, 49(3-4):220–229, 2009. doi: 10.1016/j.ijmachtools.2008.11.003.
[9] B. Izquierdo, S. Plaza, J.A. Sánchez, I. Pombo, and N. Ortega. Numerical prediction of heat affected layer in the EDM of aeronautical alloys. Applied Surface Science, 259:780–790, 2012. doi: 10.1016/j.apsusc.2012.07.124.
[10] G. Puthumana. An influence of parameters of micro-electrical discharge machining on wear of tool electrode. Archive of Mechanical Engineering, 64(2):149–163, 2017. doi: 10.1515/meceng- 2017-0009.
[11] A. Żyra, R. Bogucki, and S. Skoczypiec. Austenitic steel surface integrity after EDM in different dielectric liquids. Technical Transactions, 12:231–242, 2017. doi: 10.4467/2353737XCT.17.222.7765.
[12] J. Holmberg, A. Wretland, J. Berglund, and T. Beno. Surface integrity after post processing of EDM processed Inconel 718 shaft. The International Journal of Advanced Manufacturing Technology, 95(5-8):2325–2337, 2018. doi: 10.1007/s00170-017-1342-6.
[13] Z. Chen, J. Moverare, R.L. Peng, and S. Johansson. Surface integrity and fatigue performance of Inconel 718 in wire electrical discharge machining. Procedia CIRP, 45:307–310, 2016. doi: 10.1016/j.procir.2016.02.053.
[14] C. Upadhyay, S. Datta, M. Masanta, and S.S. Mahapatra. An experimental investigation emphasizing surface characteristics of electro-discharge-machined Inconel 601. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(8):3051–3066, 2017. doi: 10.1007/s40430-016-0643-2.
[15] D. Oniszczuk-Świercz and R. Świercz. Surface texture after wire electrical discharge machining. Proceedings of the 26th International Conference on Metallurgy and Materials, pages 1400– 1406, Brno, Czech Republic, 24–26 May 2017. WOS:000434346900226.
[16] L. Straka, I. Corný, J. Pitel’, and S. Hašová. Statistical approach to optimize the process parameters of HAZ of tool steel EN X32CrMoV12-28 after die-sinking EDM with SF-Cu electrode. Metals, 7(2):35, 2017. doi: 10.3390/met7020035.
[17] P. Vishnu, N. Santhosh Kumar, and M. Manohar. Performance prediction of electric discharge machining of Inconel-718 using artificial neural network. Materials Today: Proceedings, 5(2):3770–3780, 2018. doi: 10.1016/j.matpr.2017.11.630.
[18] V. Aggarwal, S.S. Khangura, and R.K. Garg. Parametric modeling and optimization for wire electrical discharge machining of Inconel 718 using response surface methodology. The International Journal of Advanced Manufacturing Technology, 79(1-4):31–47, 2015. doi: 10.1007/s00170-015-6797-8.
[19] S. Prabhu and B.K. Vinayagam. Multiresponse optimization of EDM process with nanofluids using TOPSIS method and genetic algorithm. Archive of Mechanical Engineering, 63(1):45–71, 2016. doi: 10.1515/meceng-2016-0003.
[20] Rahul, K. Abhishek, S. Datta, B.B. Biswal, and S.S. Mahapatra. Machining performance optimization for electro-discharge machining of Inconel 601, 625, 718 and 825: an integrated optimization route combining satisfaction function, fuzzy inference system and Taguchi approach. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39(9):3499–3527, 2017. doi: 10.1007/s40430-016-0659-7.
[21] M. Tanjilul, A. Ahmed, A.S. Kumar, and M. Rahman. A study on EDM debris particle size and flushing mechanism for efficient debris removal in EDM-drilling of Inconel 718. Journal of Materials Processing Technology, 255:263–274, 2018. doi: 10.1016/j.jmatprotec.2017.12.016.
[22] A. Ahmed, A. Fardin, M. Tanjilul, Y.S. Wong, M. Rahman, and A.S. Kumar. A comparative study on the modelling of EDM and hybrid electrical discharge and arc machining considering latent heat and temperature-dependent properties of Inconel 718. The International Journal of Advanced Manufacturing Technology, 94(5-8):2729–2737, 2018. doi: 10.1007/s00170-017-1100-9.
[23] S. Kumar, A.K. Dhingra, and S. Kumar. Parametric optimization of powder mixed electrical discharge machining for nickel-based superalloy inconel-800 using response surface ethodology. Mechanics of Advanced Materials and Modern Processes, 3:7, 2017. doi: 10.1186/s40759-017-0022-4.
[24] G.S. Prihandana, T. Sriani, M. Mahardika, M. Hamdi, N. Miki, Y.S. Wong, and K. Mitsui. Application of powder suspended in dielectric fluid for fine finish micro-EDM of Inconel 718. The International Journal of Advanced Manufacturing Technology, 75(1-4):599–613, 2014. doi: 10.1007/s00170-014-6145-4.
[25] G. Talla, S. Gangopadhyay, and C.K. Biswas. Effect of powder-suspended dielectric on theEDM characteristics of Inconel 625. Journal of Materials Engineering and Performance, 25(2):704– 717, 2016. doi: 10.1007/s11665-015-1835-0.
[26] A. Torres, I. Puertas, and C.J. Luis. EDM machinability and surface roughness analysis of INCONEL 600 using graphite electrodes. The International Journal of Advanced Manufacturing Technology, 84(9-12):2671–2688, 2016. doi: 0.1007/s00170-015-7880-x.
[27] S. Spadło, P. Młynarczyk, and K. Łakomiec. Influence of the of electrical discharge alloying methods on the surface quality of carbon steel. The International Journal of Advanced Manufacturing Technology, 89(5-8):1529–1534, 2017. doi: 10.1007/s00170-016-9168-1.
[28] S. Spadło, J. Kozak, and P. Młynarczyk. Mathematical modelling of the electrical discharge mechanical alloying process. Procedia CIRP, 6:422–426, 2013. doi: 10.1016/j.procir.2013.03.031.
[29] I. Pliszka, N. Radek, and A. Gądek-Moszczak. Properties of WC-Cu electro spark coatings subjected to laser modification. Tribologia, 5:73–79, 2017.
[30] T. Chmielewski, D. Golański, and W. Włosiński. Metallization of ceramic materials based on the kinetic energy of detonation waves. Bulletin of the Polish Academy of Sciences Technical Sciences, 63(2):449–456, 2015. doi: 10.1515/bpasts-2015-0051.
[31] J. Holmberg, A. Wretland, and J. Berglund. Grit blasting for removal of recast layer from EDM process on Inconel 718 shaft: an evaluation of surface integrity. Journal of Materials Engineering and Performance, 25(12):5540–5550, 2016. doi: 10.1007/s11665-016-2406-8.
[32] A. Ruszaj, S. Skoczypiec, and D. Wyszyński. Recent developments in abrasive hybrid manufacturing processes. Management and Production Engineering Review, 8(2):81–90, 2017. doi: 10.1515/mper-2017-0020.
[33] T. Sałaciński, M. Winiarski, T. Chmielewski, and R. Świercz. Surface finishing using ceramic fiber brush tools. Proceedings of the 26th International Conference on Metallurgy and Material, pages 1220–1226, Brno, Czech Republic, 24–26 May 2017. WOS:000434346900195.
[34] R. Świercz and D. Oniszczuk-Świercz. Experimental investigation of surface layer properties of high thermal conductivity tool steel after electrical discharge machining. Metals, 7(12):550, 2017. doi: 10.3390/met7120550.
[35] Douglas C. Montgomery. Design and Analysis of Experiments. 9th edition. Wiley. 2017.
[36] I. Ayesta, B. Izquierdo, J.A. Sánchez, J.M. Ramos, S. Plaza, I. Pombo, N. Ortega, H. Bravo, R. Fradejas, and I. Zamakona. Influence of EDM Parameters on slot machining in C1023 aeronautical alloy. Procedia CIRP, 6:129–134, 2013. doi: 10.1016/j.procir.2013.03.059.
Go to article

Authors and Affiliations

Rafał Świercz
1
Dorota Oniszczuk-Świercz
1
Lucjan Dąbrowski
1

  1. Warsaw University of Technology, Institute of Manufacturing Technology, Warsaw, Poland.
Download PDF Download RIS Download Bibtex

Abstract

Optimal parameters setting of injection moulding (IM) machine critically effects productivity, quality, and cost production of end products in manufacturing industries. Previously, trial and error method were the most common method for the production engineers to meet the optimal process injection moulding parameter setting. Inappropriate injection moulding machine parameter settings can lead to poor production and quality of a product. Therefore, this study was purposefully carried out to overcome those uncertainty. This paper presents a statistical technique on the optimization of injection moulding process parameters through central composite design (CCD). In this study, an understanding of the injection moulding process and consequently its optimization is carried out by CCD based on three parameters (melt temperature, packing pressure, and cooling time) which influence the shrinkage and tensile strength of rice husk (RH) reinforced low density polyethylene (LDPE) composites. Statistical results and analysis are used to provide better interpretation of the experiment. The models are form from analysis of variance (ANOVA) method and the model passed the tests for normality and independence assumptions.
Go to article

Authors and Affiliations

Haliza Jaya
1 2
ORCID: ORCID
Nik Noriman Zulkepli
1 2
ORCID: ORCID
Mohd Firdaus Omar
1 2
ORCID: ORCID
Shayfull Zamree Abd Rahim
1 3
ORCID: ORCID
Marcin Nabiałek
4
ORCID: ORCID
Kinga Jeż
4
ORCID: ORCID
Mohd Mustafa Al Bakri Abdullah
1 2
ORCID: ORCID

  1. Universiti Malaysia Perlis, Centre of Excellence Geopolymer and Green Technology (CeGeoGTech), 02600 Arau, Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Kompleks Pengajian Jejawi 2, 02600 Arau, Perlis, Malaysia
  3. Universiti Malaysia Perlis (UniMAP), Faculty of Mechanical Engineering Technology, Kampus Alam Pauh Putra, 02600 Arau, Perlis, Malaysia
  4. Częstochowa University of Technology, Department of Physics, 42-200 Częstochowa, Poland

This page uses 'cookies'. Learn more