Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 2
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

In this paper the chemo-rheological behavior of aqueous TiC suspension and physical properties of gelcasted green body were investigated. The monomer system used in this project was acrylamide (AM) and methylenebisacrylamide (MBAM). Polymerisation reaction was promoted by the addition of tetramethyl ethylenediamine as a catalyst and ammonium persulfate as a initiator. The effects of tetramethylammonium hydroxide (TMAH), polyethylenimine (PEI) and polyethylene glycol (PEG) dispersants on the premix solution containing TiC powder have been studied via observation of the zeta potential and rheological behavior. The optimal amount of TMAH was achieved 0.4 wt.% at pH 9. The chemorheological results showed that the gelation time decreased and viscosity increased with increasing the monomer content, solid loading, initiator amount and temperature. The highest flexural strength of gel casted green body was obtained with 50 vol% solid loading and 25 wt.% monomers content.
Go to article

Authors and Affiliations

H. Foratirad
H.R. Baharvandi
Ghanadi Maragheh M.
Download PDF Download RIS Download Bibtex

Abstract

This paper presents numerical results for flow behavior between a cold inner cylinder and a hot outer cylinder. Both cyl-inders are placed horizontally. The space separating the two compartments is completely filled with a fluid of a complex rheological nature. In addition, the outer container is subjected to a constant and uniform rotational speed. The results of this work were obtained after solving the differential equations for momentum and energy. The parameters studied in this research are: the intensity of thermal buoyancy, the speed of rotation of the outer container and the rheological nature of the fluid. These elements are expressed mathematically by the following values: Richardson number (Ri = 0 and 1), Reyn-olds number (Re = 1 to 40), power-law number (n = 0.8, 1 and 1.4) and Prandtl number (Pr = 50). The results showed that the speed of rotation of the cylinder and the rheological nature of the fluids have an effective role in the process of heat transfer. For example, increasing the rotational speed of the enclosure and/or changing the nature of fluid from shear-thickening into shear-thinning fluid improves the thermal transfer rate.
Go to article

Authors and Affiliations

Abdeljalil Benmansoura
1
Houssem Laidoudia
1

  1. Laboratory of Sciences and Marine Engineering, Faculty of Mechanical Engineering, USTO-MB, BP 1505, El-Menaouer, Oran, 31000, Algeria

This page uses 'cookies'. Learn more