Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 30
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper deals with the legal aspects of saving life at sea by the Maritime Search and Rescue Service (SAR Service). Depending on the situation, it is possible to provide assistance to a ship in distress at sea and to people on board, either from the sea by another ship, or from the land side, i.e. from the coast by specially prepared services. The effective functioning of the SAR organizational system determines the effectiveness of the SAR action in terms of the number of people saved from danger at sea. In order to provide assistance, SAR services around the world performs distress monitoring, communication, coordination, as well as search and rescue tasks, including the pro-vision of medical advice, initial medical assistance or medical evacuation, through the use of public and private resources, including associated aircraft. The tasks of the SAR services include organizing disembarkation of rescued people.
Go to article

Authors and Affiliations

Dorota Pyć
1
ORCID: ORCID

  1. Katedry Prawa Morskiego, Wydział Prawa i Administracji Uniwersytetu Gdańskiego
Download PDF Download RIS Download Bibtex

Abstract

The TerraSAR-X add-on for Digital Elevation Measurement ( TanDEM-X) mission launched in 2010 is another programme – after the Shuttle Radar Topography Mission (SRTM) in 2000 – that uses space-borne radar interferometry to build a global digital surface model. This article presents the accuracy assessment of the TanDEM-X intermediate Digital Elevation Model (IDEM) provided by the German Aerospace Center (DLR) under the project “Accuracy assessment of a Digital Elevation Model based on TanDEM-X data” for the southwestern territory of Poland. The study area included: open terrain, urban terrain and forested terrain. Based on a set of 17,498 reference points acquired by airborne laser scanning, the mean errors of average heights and standard deviations were calculated for areas with a terrain slope below 2 degrees, between 2 and 6 degrees and above 6 degrees. The absolute accuracy of the IDEM data for the analysed area, expressed as a root mean square error (Total RMSE), was 0.77 m.
Go to article

Authors and Affiliations

Małgorzata Woroszkiewicz
Ireneusz Ewiak
Paulina Lulkowska
Download PDF Download RIS Download Bibtex

Abstract

The geodetic measurements optimization problem has played a crucial role in the mining areas affected by continuous ground movement. Such movements are most frequently measured with the classical geodetic methods such as levelling, tachymetry or GNSS (Global Navigation Satellite System). The measuring techniques are selected with respect to the dynamics of the studied phenomena, surface hazard degree, as well as the financial potential of the mining company. Land surface changes caused by underground exploitation are observed with some delay because of the mining and geological conditions of the deposit surroundings. This delay may be considerable in the case of salt deposits extraction due to slow convergence process, which implies ground subsidence maximum up to a few centimeters per year. Measuring of such displacements requires high precision instruments and methods. In the case of intensely developed urban areas, a high density benchmark network has to be provided. Therefore, the best solution supporting the monitoring of vertical ground displacements in the areas located above the salt deposits seems to be the Sentinel 1-A radar imaging satellite system. The main goal of the investigation was to verify if imaging radar from the Sentinel 1 mission could be applied to monitor of slow ground vertical movement above word heritage Wieliczka salt mine. The outcome of the analysis, which was based on DInSAR (Differential SAR Interferometry). technology, is the surface distribution of annual subsidence in the period of 2015-2016. The comparison of the results with levelling confirmed the high accuracy of satellite observations. What is significant, the studies allowed to identify areas with the greatest dynamics of vertical ground movements, also in the regions where classical surveying was not conducted. The investigation proved that with the use of Sentinel-1 images sub centimeters slow vertical movements could be obtained.
Go to article

Authors and Affiliations

Agnieszka Malinowska
Artur Guzy
Ryszard Hejmanowski
Wojciech Tomasz Witkowski
Download PDF Download RIS Download Bibtex

Abstract

The objective of this work is to evaluate the safety of adult and child passengers exposed to a radio frequency (RF) source, i.e., a leaky coaxial cable (LCX) on the subway platform. An adult model, a child model, and an LCX model have been numerically designed in COMSOL Multiphysics software. The distributions of the induced electric field (E-field), specific absorption rate (SAR), magnetic field ( H-field) and the head temperature increase in adult and child passenger models were calculated at 900 MHz. The induced fields in the passengers were compared with that without screen doors. The results show that the E-field, SAR and H-field in the whole body of the child are 2.00 × 10 -2 V/m, 1.07 × 10 -7 W/kg, and 2.94 × 10 -4 A/m, respectively. The E-field, SAR and H-field in the central nervous system of the child are 1.00e × 10 -2 V/m, 2.44 × 10 -8 W/kg, and 2.41 × 10 -4 A/m, respectively. The maximum values of the E-field, SAR and H-field in the adult passenger are 1.49–2.34 times higher than those of the child. The E-field, SAR, and H-field in the passenger models without a screen door are larger than those with a screen door. The screen door has a partial shielding effect on the RF electromagnetic field. The values of the maximum temperature that increases in adult and child head tissue are 0.2114 and 0.2111℃ after waiting 6 minutes exposure, respectively. All calculated results are well below the International Commission on Non-Ionizing Radiation Protection (ICNIRP) limits for general public exposure, indicating that RF electromagnetic exposure caused by the LCX on the subway platform is not a threat to passenger’s health.
Go to article

Bibliography

[1] https://www.163.com/dy/article/H08UC3PI051481OF.html, accessed February 2022.
[2] Verbeek J., Oftedal G., Feychting M., Rongen E., Prioritizing health outcomes when assessing the effects of exposure to radiofrequency electromagnetic fields: A survey among experts, Environment International, vol. 146, no. 1, pp. 1–6 (2020), DOI: 10.1016/j.envint.2020.106300.
[3] Ju H.K., Lee J.K., Kim H.G., Possible Effects of Radiofrequency Electromagnetic Field Exposure on Central Nerve System, Biomolecules and Therapeutics, vol. 27, no. 3, pp. 265–275 (2019), DOI: 10.4062/biomolther.2018.152.
[4] Jiang D.P., Li J.H., Zhang J., Long-term electromagnetic pulse exposure induces Abeta deposition and cognitive dysfunction through oxidative stress and overexpression of APP and BACE1, Brain Research, vol. 1642, no. 1, pp. 10–19 (2016), DOI: 10.1016/j.brainres.2016.02.053.
[5] Hinrikus H., Bachmann M., Lass J., Understanding physical mechanism of low-level microwave radiation effect, International Journal of Radiation Biology, vol. 94, no. 10, pp. 877–882 (2018), DOI: 10.1080/09553002.2018.1478158.
[6] Baan R., Grosse Y., Lauby-Secretan B., El Ghissassi F., Carcinogenicity of radiofrequency electromagnetic fields, Lancet Oncology, vol. 12, no. 7, pp. 624–626 (2011), DOI: 10.1016/S1470-2045(11)70147-4.
[7] Qi X.Z., Lu M., Study on the distribution of SAR and temperature in human brain during radiofrequency cosmetic treatment, Archives of Electrical Engineering, vol. 70, no. 1, pp. 115–127 (2021), DOI: 10.24425/aee.2021.136056.
[8] Tian R., Lu M., Safety assessment of electromagnetic exposure in high-speed train carriage with full passengers, Annals of Work Exposures and Health, vol. 64, no. 8, pp. 838–851 (2020), DOI: 10.1093/annweh/wxaa048.
[9] Gas P., Wyszkowska J., Influence of multi-tine electrode configuration in realistic hepatic RF ablative heating, Archives of Electrical Engineering, vol. 68, no. 3, pp. 521–533 (2019), DOI: 10.24425/aee.2019.129339.
[10] Stankovi V., Jovanovi D., Krsti D., Temperature distribution and Specific Absorption Rate inside a child’s head, International Journal of Heat and Mass Transfer, vol. 104, no. 1, pp. 559–565 (2017), DOI: 10.1016/j.ijheatmasstransfer.2016.08.094.
[11] Peyman A., Rezazadeh A.A., Gabriel C., Changes in the dielectric properties of rat tissue as a function of age at microwave frequencies, Physics in Medicine and Biology, vol. 46, no. 12, pp. 1617–1629 (2001), DOI: 10.1088/0031-9155/55/15/N02.
[12] Peyman A., Gabriel C., Grant E.H., Variation of the dielectric properties of tissues with age: the effect on the values of SAR in children when exposed to walkie-talkie devices, Physics in Medicine and Biology, vol. 54, no. 1, pp. 227–241 (2009), DOI: 10.1088/0031-9155/54/2/004.
[13] Foster K.R., Chou C.K., Are Children More Exposed to Radio Frequency Energy from Mobile Phones Than Adults?, IEEE Access, vol. 2014, no. 2, pp. 1497–1509 (2014), DOI: 10.1109/ACCESS.2014.2380355.
[14] Gandhi O.P., Yes the children are more exposed to radiofrequency energy from mobile telephones than adults, IEEE Access, vol. 2015, no. 3, pp. 985–988 (2015), DOI: 10.1109/ACCESS.2015.2438782.
[15] Morris R.D., Morgan L.L., Davis D., Children Absorb Higher Doses of Radio Frequency Electromagnetic Radiation from Mobile Phones Than Adults, IEEE Access, vol. 2015, no. 3, pp. 2379–2387 (2015), DOI: 10.1109/ACCESS.2015.2478701.
[16] Stankovi V., Jovanovi D., Krsti D., Markovi V., Cvetkovi N., Temperature distribution and specific absorption rate inside a child’s head, International Journal of Heat and Mass Transfer, vol. 104, no. 1, pp. 559–565 (2017), DOI: 10.1016/j.ijheatmasstransfer.2016.08.094.
[17] ICNIRP, Guidelines for Limiting Exposure to Electromagnetic Fields (100 kHz to 300 GHz), Health Physics, vol. 118, no. 5, pp. 483–524 (2020), DOI: 10.1097/HP.0000000000001210.
[18] Hardell L., World Health Organization, radiofrequency radiation and health - a hard nut to crack (Review), International Journal of Oncology, vol. 51, no. 2, pp. 405–413 (2017), DOI: 10.3892/ijo.2017.4046.
[19] Tsa B., Db B., Arm B., Biological effects of non-ionizing electromagnetic fields: Two sides of a coin, Progress in Biophysics and Molecular Biology, vol. 141, no. 1, pp. 25–36 (2019), DOI: 10.1016/j.pbiomolbio.2018.07.009.
[20] Ayugi G., Kisolo A., Ireeta T.W., Temporal variation of radiofrequency electromagnetic field exposure from mobile phone base stations in sensitive environments, IOSR Journal of Applied Physics, vol. 9, no. 5, pp. 9–15 (2020), DOI: 10.9790/4861-0905010915.
[21] Carlberg M., Hedendahl L., Koppel T., High ambient radiofrequency radiation in Stockholm city, Sweden, Oncology letters, vol. 17, no. 2, pp. 1777–1783 (2018), DOI: 10.3892/ol.2018.9789.
[22] Hardell L., Koppel T., Carlberg M., Radiofrequency radiation at Stockholm Central Railway Station in Sweden and some medical aspects on public exposure to RF fields, International Journal of Oncology, vol. 49, no. 2, pp. 1315–1324 (2016), DOI: 10.3892/ijo.2016.3657.
[23] Gryz K., Karpowicz J., Radiofrequency electromagnetic radiation exposure inside the metro tube infrastructure in Warszawa, Electromagnetic Biology and Medicine, vol. 34, no. 3, pp. 265–273 (2015), DOI: 10.3109/15368378.2015.1076447.
[24] Zhang B., Zhong Z., He R., Multi-User channels with large-scale antenna arrays in a subway environment: characterization and modeling, IEEE Access, vol. 5, no. 1, pp. 23613–23625 (2017), DOI: 10.1109/ACCESS.2017.2764621.
[25] Yang C.Q., Lu M., Safety evaluation for a high signal operator with electric field exposure induced by contact wires, Archives of Electrical Engineering, vol. 70, no. 2, pp. 431–444 (2021), DOI: 10.24425/aee.2021.136994.
[26] Jalilian H.,Najafi K., Monazzam M.R., Occupational Exposure of Train Drivers to Static and Extremely Low Frequency Magnetic Fields in Tehran Subway, Jundishapur Journal of Health Sciences, vol. 9, no. 4, pp. 1–8 (2017), DOI: 10.5812/jjhs.14329.
[27] Wang J.H., Mei K.K., Design of leaky coaxial cables with periodic slots, Radio Science, vol. 37, no. 5, pp. 1–10 (2002), DOI: 10.1029/2000RS002534.
[28] Standardization Administration of China, Human dimensions of Chinese minors, GB/T 26158-2010 (2011).
[29] Rush S., Current distribution in the brain from surface electrodes, Anesthesia & Analgesia, vol. 47, no. 6, pp. 717–723 (1968).
[30] Gandhi O.P., Lazzi G., Furse C.M., Electromagnetic absorption in the human head and neck for mobile telephones at 835 and 1900 MHz, IEEE Transactions on Microwave Theory and Techniques, vol. 44, no. 10, pp. 1884–1897 (1996), DOI: 10.1109/22.539947.
[31] Gabriel C., Gabriel S., Corthout E., The dielectric properties of biological tissues: I. Literature survey, Phys. Med. Biol., vol. 41, no. 11, pp. 2231–49 (1996).
[32] Wang J., Fujiwara O., Watanabe S., Approximation of aging effect on dielectric tissue properties for SAR assessment of mobile telephones, IEEE Transactions on Electromagnetic Compatibility, vol. 48, no. 2, pp. 408–413 (2006), DOI: 10.1109/TEMC.2006.874085.
[33] Bhargava D., Leeprechanon N., Rattanadecho P., Specific absorption rate and temperature elevation in the human head due to overexposure to mobile phone radiation with different usage patterns, International Journal of Heat and Mass Transfer, vol. 130, no. 3, pp. 1178–1188 (2019), DOI: 10.1016/j.ijheatmasstransfer.2018.11.031.
[34] Pintos V.P., Ovide B.A., Munoz C., EMC measurements in Buenos Aires metro system, IEEE International Symposium on Electromagnetic Compatibility, Turkey, vol. 2003, no. 1, pp. 40–43 (2003), DOI: 10.1109/ICSMC2.2003.1428187.
[35] Lv H.G., Network spectrum measurement technique, Beijing: Tsinghua University Press, pp. 23–36 (2000).
[36] Spiegel R.J., A review of numerical models for predicting the energy deposition and resultant thermal response of humans exposed to electromagnetic fields, IEEE Transactions on Microwave Theory and Techniques, vol. 32, no. 8, pp. 730–746 (1984), DOI: 10.1109/TMTT.1984.1132767.
[37] Pennes H.H., Analysis of tissue and arterial blood temperatures in the resting human forearm, Journal of Applied Physiology, vol. 85, no. 1, pp. 5–34 (1998), DOI: 10.1152/jappl.1998.85.1.5.
[38] Yang D., Converse M.C., Mahvi D.M., Expanding the bioheat equation to include tissue internal water evaporation during heating, IEEE Transactions on Biomedical Engineering, vol. 54, no. 8, pp. 1382–1388 (2007), DOI: 10.1109/TBME.2007.890740.
Go to article

Authors and Affiliations

Jin Li
1
ORCID: ORCID
Mai Lu
1
ORCID: ORCID

  1. Key Laboratory of Opto-Electronic Technology and Intelligent Control of Ministry of Education, Lanzhou Jiaotong University, Gansu Province, China
Download PDF Download RIS Download Bibtex

Abstract

Introduction - The SARS-CoV-2 pandemic is a major health crisis modern world has to counter. Due to the highly contagious nature of this virus and the rapid growth of infections in many countries specific medical recommendations have been formed to reduce spread of the virus. Aim of the study is determine the psychosocial factors related to obeying medical recommendations against SARS-CoV-2 pandemic during the stage of increasing government’s restrictions and limitations.
Method – The study included 319 participants (261 women and 58 men) aged 18-66 yrs (M=25). The study was carried out via the Internet from 21st March, 2020 to 27th March, 2020. The sample group included participants chosen using “snowball” effect.
Results - It has been shown that the higher anxiety of falling ill, the higher tendency to obey health behaviors towards SARS-CoV-2 (r = .13, p < .001). In order to explain what factors undertaking health behaviors towards SARS-CoV-2 depends on, structural equation modeling was applied including HMB model variables. It has been shown that the benefits and barriers have a significant impact on compliance with health behavior towards SARS-CoV-2 (ß = 0.45, p <0.001).
Conclusions – At the beginning of a pandemic, while increasing restrictions perceived barriers and perceived benefits of obeying health recommendations are significant for explaining health behaviors towards SARS-CoV-2 pandemic. Perceived risk is less important. Higher intensity of health anxiety, understood as a fear of infection (likelihood of illness) is related to obeying the health behaviors towards SARS-Cov-2.
Go to article

Authors and Affiliations

Jarosław Ocalewski
1
ORCID: ORCID
Karolina Juszczyk
1
ORCID: ORCID
Patrycja Michalska
1
ORCID: ORCID
Maciej Michalak
1
ORCID: ORCID
Paweł Kajetan Izdebski
1
ORCID: ORCID
Michał Jankowski
2
ORCID: ORCID
Krzysztof Buczkowski
3
ORCID: ORCID

  1. Department of Health Psychology, Faculty of Psychology, Faculty of Psychology, Kazimierz Wielki University, Bydgoszcz, Poland
  2. Chair of Surgical Oncology Ludwik Rydygier Collegium Medicum in Bydgoszcz and Nicolaus Copernicus University, Toruń
  3. Department of Family Medicine Ludwik Rydygier Collegium Medicum in Bydgoszcz and Nicolaus Copernicus University, Torun, Poland
Download PDF Download RIS Download Bibtex

Abstract

Nowadays, the world is turning into technology, fast internet and high signal quality. To ensure high signal quality, the network planners have to predict the pathloss and signal strength of the transmitted signal at specific distances in the design stage. The aim of this research is to provide a generalized pathloss model to suit the urban area in Muscat Governorate in the Sultanate of Oman. The research covers 5G network pathloss in the Muttrah Business District (MBD) area. It includes Close In (CI) model and Alpha Beta Gamma (ABG) model with 3.45GHz. The results of 5G models were compared with real experimental data in MBD by calculating Root Mean Square Error RMSE. Other cells at MBD area were used for reverification. To validate the modified pathloss models of 5G, they were applied at different cells in Alkhoud area. Furthermore, this paper also deals the effect of Specific Absorption Rate (SAR) on the human brain for ensuring safety due to close proximity to cell towers. The SAR values were calculated indirectly from the electric field strength of different antennas. Calculated results were compared with the international standards defined limits on the human brain.
Go to article

Authors and Affiliations

Nawal Al-Aamri
1
Zia Nadir
1
Mohammed Bait-Suwailam
1
Hassan Al-Lawati
1

  1. ECE Dept. at College of Engineering at SQU, Muscat, Sultanate of Oman
Download PDF Download RIS Download Bibtex

Abstract

The paper presents the potential of combining satellite radar data and neural networks for quasi-automatic detection of glacier grounding lines. The conducted research covered five years and was carried out in the area of the Amery Ice Shelf. It has a very complex shoreline, so its grounding-line location is uncertain. Thus, it has always been the subject of much research. The main objective of our work was to find out if Synthetic Aperture Radar data combined with a deep learning implementation would enable rapid detection of ice shelf grounding lines over large areas. For this purpose, 290 radar images from the Sentinel-1 satellite covering 46 000 km2 were used. Processed by the Differential Interferometry of Synthetic Aperture Radar four-pass method, the images formed a time-consistent series between 2017 and 2021. As a result of performed calculations, a total length of 1280 km of grounding line was determined. They were validated by comparing with other independent data sources based on manual measurements. It has been demonstrated that the combination of satellite radar data and automated data processing allows for obtaining high-precision results continuously in a very short time. Such an approach allows monitoring of grounding line position in the long term with intervals of less than one week. It enables analysis of the dynamics changes with unprecedented frequency and the identification of patterns.
Go to article

Authors and Affiliations

Michał Tympalski
1
ORCID: ORCID
Marek Sompolski
1
ORCID: ORCID
Anna Kopeć
1
ORCID: ORCID
Wojciech Milczarek
1
ORCID: ORCID

  1. Faculty of Geoengineering, Mining and Geology, Wrocław University of Science and Technology, Na Grobli 15, 50-421 Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

Zjawiska dynamiczne – zarówno pochodzenia antropogenicznego, jak i naturalnego – występują zazwyczaj nieoczekiwanie i ujawniają się z dużą prędkością. Zmiany morfologii powierzchni terenu cechują się w takich przypadkach dużą gwałtownością, a rejony ich występowania nie podlegają najczęściej stałemu monitoringowi naziemnemu. Z tego względu kompleksowe opisanie skutków zaistnienia zjawisk tego typu – zwłaszcza po upływie pewnego czasu od ich wystąpienia – jest trudne, a często niemożliwe. J ednocześnie, dla badań nad charakterystykami jakościowymi i ilościowymi zjawisk dynamicznych, wartości i kierunki przemieszczeń powierzchni terenu będące ich wynikiem mają duże znaczenie. Zastosowanie satelitarnej interferometrii radarowej w badaniach zmian rzeźby powierzchni terenu wywołanych przez zjawiska takie jak trzęsienia ziemi jest już od pewnego czasu rutyną. N iemniej misja S entinel, która prowadzona jest przez Europejską Agencję Kosmiczną, stwarza nowe możliwości prowadzenia monitoringu na obszarach, na których wystąpiły zjawiska o charakterze dynamicznym. Autorzy postanowili sprawdzić, czy wstrząs pochodzenia górniczego generuje ruchy powierzchni terenu oraz zbadać, w jakiej odległości od epicentrum mają one miejsce oraz określić rząd wielkości ruchów tego typu. Analizy interferometryczne, które oparto na metodzie satelitarnej interferometrii różnicowej DInSAR na podstawie zobrazowań radarowych pochodzących z misji S entinel pozwoliły na uzyskanie odpowiedzi na te pytania.

Go to article

Authors and Affiliations

Agnieszka Malinowska
Wojciech Witkowski
Artur Guzy
Ryszard Hejmanowski
Download PDF Download RIS Download Bibtex

Abstract

This paper describes a synthetic aperture radar system for tactical-level imagery intelligence installed on board an unmanned aerial vehicle. Selected results of its tests are provided. The system contains interchange-able S-band and Ku-band linear frequency-modulated, continuous wave radar sensors that were built within a frame of a research project named WATSAR, conducted by the Military University of Technology and WB Electronics S.A. One of several algorithms of radar image synthesis, implemented in the scope of the project, is described in this paper. The WATSAR system can create online and off-line radar images.

Go to article

Authors and Affiliations

Piotr Kaniewski
Wojciech Komorniczak
Czesław Leśnik
Jacek Cyrek
Waldemar Susek
Piotr Serafin
Michał Łabowski
Download PDF Download RIS Download Bibtex

Abstract

The aim of this study was to evaluate millimeter-scale deformations in Tallinn, the capital of Estonia, by using repeated leveling data and the synthetic aperture radar (SAR) images of Sentinel-1 satellite mission. The persistent scattered interferometric SAR (PS-InSAR) analysis of images from ascending and descending orbits from June 2016 to November 2021 resulted the line-of-sight (LOS) displacement velocities in the Tallinn city center. Velocity solutions were estimated for the full period of time, but also for shorter periods to monitor deformation changes in yearly basis. The gridded LOS velocity models were used for the decomposition of east-west and vertical velocities. Additionally, the uncertainty of 2D velocity solutions was estimated by following the propagation of uncertainty. The 3D velocity of permanent GNSS station “MUS2” in Tallinn was used to unify the reference of all PS-InSAR velocity solutions. The results of the latest leveling in Tallinn city center in 2007/2008 and 2019 showed rather small subsidence rates which were in agreement with InSAR long-termsolution. However, the short-termInSAR velocity solutions revealed larger subsidence of city center with a rate about –10 mm/yr in 2016–2017, and the uplift around 5 mm/yr in 2018–2019 with relatively stable periods in 2017–2018 and 2019–2021. The inclusion of groundwater level observation data and the geological mapping information into the analysis revealed possible spatiotemporal correlation between the InSAR results and the groundwater level variations over the deep valleys buried under quaternary sediments.
Go to article

Authors and Affiliations

Tõnis Oja
1
ORCID: ORCID
Anti Gruno
1

  1. Datel AS, Tallinn, Estonia
Download PDF Download RIS Download Bibtex

Abstract

β-1,3-glucanases play a major role in combating the abnormal leaf fall disease (ALF) caused by the oomycete Phytophthora spp. in Hevea brasiliensis, the major commercial source of natural rubber. In this study, partial sequences of four novel promoters of different β-1,3-glucanase genomic forms were amplified through inverse PCR from the H. brasiliensis clone RRII 105 and sequence characterized. This is the first report showing β-1,3-glucanase genes driven by a different set of promoter sequences in a single clone of Hevea. The nucleotide sequencing revealed the presence of 913, 582, 553 and 198 bp promoter regions upstream to the translation initiation codon, ‘ATG’, and contained the essential cis-elements that are usually present in biotic/abiotic stress-related plant gene promoters along with other complex regulatory regions. The amplified regions showed strong nucleosome formation potential and in two of the promoters CpG islands were observed indicating the tight regulation of gene expression by the promoters. The functional efficiency of the isolated promoter forms was validated using promoter: reporter gene (GUS) fusion binary vectors through Agrobacterium mediated transformation in Hevea callus and tobacco. GUS gene expression was noticed in Hevea callus indicating that all the promoters are functional. The transgenic tobacco plants showed no GUS gene expression. The implication of these novel promoter regions to co-ordinate the β-1,3-glucanase gene expression can be utilized for defense specific gene expression in future genetic transformation attempts in Hevea and in a wide variety of plant systems.
Go to article

Bibliography

1. Adrienne C.S., Barbara J.H. 2006. Parallels in fungal pathogenesis on plant and animal hosts. Eukaryotic Cell 5 (12): 1941–1949. DOI: https://doi.org/10.1128/EC.00277-06
2. Altschul S.F., Gish W., Miller W., Myers E.W., Lipman D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology 215: 403–410. DOI: https://doi.org/10.1016/S0022-2836(05)80360-2
3. Antequera F., Bird A. 1993. Number of CpG islands and genes in human and mouse. Proceedings of the National Academy of Sciences USA 90: 11995–11999. DOI: https://doi.org/10.1073/pnas.90.24.11995
4. Anu K., Limiya J., BinduRoy C.2019. An insight into Hevea – Phytophthora interaction: The story of Hevea defense and Phytophthora counter defense mediated through molecular signalling. Current Plant Biology 17: 33–41. DOI: https://doi.org/10.1016/j.cpb.2018.11.009
5. Asawatreratanakul K., Zhang Y.W., Wititsuwannakul D., Wititsuwannakul R., Takahashi S., Rattanapittayaporn A., Koyama T. 2003. Molecular cloning, expression and characterization of cDNA encoding cis-prenyltransferases from Hevea brasiliensis. European Journal of Biochemistry 270: 4671–4680. DOI: 10.1046/j.1432-1033.2003. 03863.x
6. Chalfun-Junior A., Mes J.J., Busscher M., Angenent G.C. 2006. Analysis of the SHP2 enhancer for the use of tissue specific activation tagging in Arabidopsis thaliana. Genetics and Molecular Biology 29 (2): 401–407. DOI: https://doi.org/10.1590/S1415-47572006000200032
7. Ding C., Wang C.Y., Gross K.C., Smith D.L. 2002. Jasmonate and salicylate induce the expression of pathogenesis-related-protein genes and increase resistance to chilling injury in tomato fruit. Planta 214: 895–901. DOI: https://doi.org/10.1007/s00425-001-0698-9
8. Doyle J.J., Doyle J.L. 1990. Isolation of plant DNA from fresh tissue. Focus 12: 13–15. DOI: https://doi.org/10.1007/BF02668371
9. Droge-Laser W., Kaiser A., Lindsay W.P., Halkier B.A., Loake G.J., Doerner P., Dixon R.A., Lamb C. 1997. Rapid stimulation of a soybean protein-serine kinase that phosphorylates a novel bZIP DNA-binding protein, G/HBF-1, during the induction of early transcription-dependent defenses. EMBO Journal 16: 726–738. DOI: https://doi.org/10.1093/emboj/16.4.726
10. Ebel J., Scheel D. 1992. Elicitor recognition and signal transduction. p. 184–205. In: “Genes Involved in Plant Defense” (T. Boller, F. Meins, eds.). Springer-Verlag, Vienna, Austria. DOI: https://doi.org/10.1007/978-3-7091-6684-0
11. Eulgem T., Rushton P.J., Robatzek S., Somssich I.E. 2000. The WRKY superfamily of plant transcription factors. Trends in Plant Science 5: 199–206. DOI: https://doi.org/10.1016/S1360-1385(00)01600-9
12. Feil R., Berger F. 2007. Convergent evolution of genomic imprinting in plants and mammals. Trends in Genetics 23 (4): 192–199. DOI: https://doi.org/10.1016/j.tig.2007.02.004
13. Gao Q., Kachroo A., Kachroo P. 2014. Chemical inducers of systemic immunity in plants. Journal of Experimental Botany 65 (7): 1849–1855. DOI: https://doi.org/ 10.1093/jxb/eru010
14. Greek B.F. 1991. Rubber demand is expected to grow after 1991. Chemical and Engineering News 69: 37–54. DOI: https://doi.org/10.1021/cen-v069n019.p037
15. Higo K., Ugawa Y., Iwamoto M., Korenaga T. 1999. Plant cis-acting DNA elements (PLACE) database. Nucleic Acids Research 27: 297–300. DOI: https://doi.org/10.1093/nar/27.1.297
16. Holsters M., de Walaele., Depicker A., Messens E., Van Montagu M., Schell J. 1978. Transformation of Agrobacterium tumefaciens. Molecular and General Genetics 163: 181–187. DOI: https://doi.org/10.1007/BF00267408
17. Jaiswal R., Nain V., Abdin M.Z., Kumar P.A. 2007. Isolation of pigeon pea ( Cajanus cajan L.) legumin gene promoter and identification of conserved regulatory elements using tools of bioinformatics. Indian Journal of Biotechnology 6: 495–503. DOI: https://doi.org/10.1371/journal.pone.0118630
18. Jefferson R.A., Kavanagh T.A., Bevan M.W. 1987. Gus fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO Journal 6: 3901–3907. DOI: https://doi.org/10.1002/j.1460-2075.1987.tb02730.x
19. Jiang C., Pugh B.F. 2009. Nucleosome positioning and gene regulation: advances through genomic. Nature Reviews Genetics 10 (3): 161–172. DOI: https://doi.org/10.1038/nrg2522
20. Jin H., Martin C. 2000. Multifunctionality and diversity within the plant MYB – gene family. Nucleic Acids Research 28: 2004–2011. DOI: https://doi.org/10.1023/a:1006319732410
21. Johnson C.S., Kolevski B., Smyth D.R. 2002. Transparent Testa Glabra 2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14: 1359–1375. DOI: https://doi.org/10.1105/tpc.001404
22. Jones H.D., Doherty A., Wu H. 2005. Review of methodologies and a protocol for the Agrobacterium-mediated genetic transformation of wheat. Plant Methods 1: 5. DOI: https://doi.org/10.1186/1746-4811-1-5
23. Jongedijk E., Tigelaar H., Van Roekel J.S.C., Bres-Vloemans SA., Dekker I., Vanden Elzen P.J.M., Cornelissen BJC., Melchers L. 1995. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85: 173–180. DOI: https://doi.org/10.1007/BF00023946
24. Jung M., Pfeifer G.P. 2103. 2nd edition. San Diego: Academic Press, USA, 4368 pp. DOI: https://doi.org/10.1016/B978-0-12-374984-0.00349-1
25. Jyothishwaran G., Kotresha D., Selvaraj T., Srideshikan S.H., Rajvanshi P.K., Jayabaskaran C. 2007. A modified freeze–thaw method for efficient transformation of Agrobacterium tumefaciens. Current Science 93 (6): 770–772.
26. Kala R.G., Kumari Jayasree P., Sushamakumari S., Sobha S., Jayashree R., Rekha K., Thulaseedharan A. 2006. In vitro regeneration of Hevea brasiliensis from leaf explants. p. 223–228. In: “Recent Trends in Horticultural Biotechnology” (R. Keshavachandran, eds.). New India Publishing Agencies, New Delhi, India, 1090 pp.
27. Kawagoe Y., Murai N. 1996. A novel basic region/helix-loop-helix protein binds to the G-box motif of the bean β-phaseolin gene. Plant Science 116: 47–57. DOI: https://doi.org/10.1016/0168-9452(96)04366-X
28. Kiyama R., Trifonov E.N. 2002. What positions nucleosomes? A model. FEBS Lett 523: 7–11. DOI: https://doi.org/10.1016/s0014-5793(02)02937-x
29. Kombrink E., Schmelzer E. 2001. The hypersensitive response and its role in local and systemic disease eesistance. European Journal of Plant Pathology 107: 69–78. DOI: https://doi.org/10.1023/a:1008736629717 AGR: IND23222876
30. Levitsky V.G., Podkolodnaya O.A., Kolchanov N.A., Podkolodny N.L. 2001. Nucleosome formation potential of exons, introns, and Alu repeats. Bioinformatics 17: 1062–1064. DOI: https://doi.org/10.1093/bioinformatics/17.11.1062
31. Liu H., Ma W., Xie J., Li H., Luo K., Luo D., Liu L., Sun X. 2018. Nucleosome Positioning and Its Role in Gene Regulation in Yeast. The Yeast Role in Medical Applications. Intech Open Publishers. DOI: https://doi.org/10.5772/intechopen.70935
32. Luger K., Mader A.W., Richmond R.K., Sargent D.F., Richmond T.J. 1997. Crystal structure of the nucleosome core particle at 2.8 A° resolution. Nature 389: 251–260. DOI: https://doi.org/10.1038/38444
33. Mauch F., Hadwiger L.A., Boller T. 1988. Antifungal hydrolases in pea tissue I. Purification and characterization of two chitinases and two β-1,3-glucanases differentially regulated during development and in response to fungal infection. Plant Physiology 87: 325–333. DOI: https://doi.org/10.1104/pp.87.2.325
34. Mauch F., Staehelin L.A. 1989. Functional implication of the subcellular localization of ethylene-induced chitinase and β-1,3-glucanase in bean leaves. Plant Cell 1: 447–457. DOI: https://doi.org/10.1105/tpc.1.4.447
35. Murashige T., Skoog F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiologia Plantarum 15: 473–497. DOI: https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
36. Ochman H., Gerber A.S., Hartl D.L. 1988. Genetic applications of an inverse polymerase chain reaction. Genetics 120: 621–623.
37. Pan Y.J., Cho C.C., Kao Y.Y., Sun C.H. 2009. A novel WRKY-like protein involved in transcriptional activation of cyst wall protein genes in Giardia lamblia. Journal of Biological Chemistry 284: 17975–17988. DOI: https://doi.org/10.1074/jbc.m109.012047
38. Park S.W., Kaiyomo E., Kumar D., Mosher S.L., Klessig D.F. 2007. Methyl salicylate is a critical mobile signal for plant systemic acquired resistance. Science 318: 113–116. DOI: https://doi.org/10.1126/science.1147113
39. Qi-La S., Yi-Qin W., Wen-Bin L., Li-Ming Z., Yong-Ru. 2008. Isolation of a genomic DNA for Gastrodia antifungal protein and analysis of its promoter in transgenic tobacco. Acta Botanica Sinica 45 (2): 229–233.
40. Rudnizky S., Malik O., Bavly A., Pnueli L., Melamed P., Kaplan A. 2017. Nucleosome mobility and the regulation of gene expression: Insights from single‐molecule studies. Protein Science 26 (7): 1266–1277. DOI: https://doi.org/10.1002/pro.3159
41. Thanseem I., Joseph A., Thulaseedharan A. 2005. Induction and differential expression of β-1,3-glucanase mRNAs in tolerant and susceptible Hevea clones in response to infection by Phytophthora meadii. Tree Physiology 25: 1361–1368. DOI: https://doi.org/10.1093/treephys/25.11.1361
42. Thanseem I., Venkatachalam P., Thulaseedharan A. 2003. Sequence characterization of β-1,3-glucanase gene from Hevea brasiliensis through genomic and cDNA cloning. Indian Journal of Natural Rubber Research 16: 106–114.
43. Thompson J.D., Higgins D.G., Gibson T.J. 1994. CLUSTALW: Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position specific gap penalties and weight matrix choice. Nucleic Acids Research 22: 4673–4680. DOI: https://doi.org/10.1093/nar/22.22.4673
44. Ulker B., Somssich I.E. 2004. WRKY transcription factors: from DNA binding towards biological function. Current Opinion in Plant Biology 7: 491–498. DOI: https://doi.org/10.1016/j.pbi.2004.07.012
45. Vögeli-Lange R., Fründ C., Hart C.M., Nagy F., Meins F Jr. 1994. Developmental, hormonal, and pathogenesis-related regulation of the tobacco class I β-1,3-glucanase B promoter. Plant Molecular Biology 25 (2): 299–311. DOI: https://doi.org/10.1007/BF00023245
46. Vögeli-Lange R., Hansen-Gehri A., Boller T., Meins F. Jr. 1988. Induction of the defense-related glucanohydrolases, β-1,3-glucanase and chitinase, by tobacco mosaic virus infection of tobacco leaves. Plant Science 54: 171–176. DOI: https://doi.org/10.1016/0168-9452(88)90110-0
47. Yanagisawa S. 1997. Dof DNA-binding domains of plant transcription factors contribute to multiple protein–protein interactions. European Journal of Biochemistry 250: 403–410. DOI: https://doi.org/10.1111/j.1432-1033.1997.0403a.x
48. Zheng H., Lei Y., Zhang Z., Lin S., Zhang Q., Liu W., Du J., An X., Zhao X. 2012. Analysis of promoter activity of PtDrl02 gene in white poplars. Journal of Plant Biochemistry and Biotechnology 21 (1): 88–97. DOI: https://doi.org/10.1007/s13562-011-0084-z

Go to article

Authors and Affiliations

Supriya Radhakrishnan
1 2
Suni Anie Mathew
1 3
Alikunju Saleena
1 4
Arjunan Thulaseedharan
1

  1. Advanced Center for Molecular Biology and Biotechnology, Rubber Research Institute of India, Kottayam, Kerala, India
  2. Department of Biotechnology, University of Kerala,Thiruvananthapuram, Kerala, India
  3. Faculty of Science and Engineering, University of Turku, Turku, Finland
  4. Department of Cell Biology and Molecular Medicine, Rutgers New Jersey Medical School, Newark, New Jersey, United States of America
Download PDF Download RIS Download Bibtex

Abstract

The pandemic has exposed the precarious employment situation of artists, but also created a chance for truly equal access to theater. Maria Babicka and Justyna Czarnota-Misztal discuss the findings of a set of studies on how Polish theaters have coped in these trying times.
Go to article

Authors and Affiliations

Maria Babicka
1 2
Justyna Czarnota-Misztal
3

  1. Department of Culture Research, Methods at the Institute of Applied Social Sciences, University of Warsaw
  2. Department of Theater Pedagogy, Zbigniew Raszewski Theater Institute
  3. Department of Theatre Pedagogy, Zbigniew Raszewski Theatre Institute
Download PDF Download RIS Download Bibtex

Abstract

The article concerns the experiences of students related to hybrid education conducted in the first semester of the academic year 2021/2022. The aim of the study was to find out the opinions of students on hybrid education conducted at The Maria Grzegorzewska University and to compare it with traditional education and distance education. The subject of the research was, among others, the readiness of students to participate in hybrid learning, assessing its quality and other related experiences. The research used the method of diagnostic survey. The obtained results indicate that students rate their readiness to participate in hybrid education higher than the readiness of lecturers to conduct it. They see the possibility of using a hybrid approach to education and science, organization of education and health. They indicate convenience, organization and health safety as the most important advantages and social costs, student attitudes and technical problems as the most important disadvantages of hybridization. The article also presents the expectations of students in relation to the systemic sanctioning of hybrid education. It was suggested to use the lessons learned by developing and testing the effectiveness of a hybrid approach, the potential of which is undeniable and scientifically proven.
Go to article

Authors and Affiliations

Miłosz Wawrzyniec Romaniuk
1
Joanna Łukasiewicz-Wieleba
1

  1. The Maria Grzegorzewska University, Poland
Download PDF Download RIS Download Bibtex

Abstract

The article concerns the experiences of academic teachers related to hybrid education at the end of the SARS-CoV- 2 coronavirus pandemic. The aim of the study was to understand the lecturers' perspective on hybrid education implemented in the first semester of the 2021/2022 academic year at The Maria Grzegorzewska University and an attempt to compare it with traditional education and distance education. The subject of the research was, among others, readiness to implement hybrid teaching, university support for lecturers in the field of hybrid teaching and the diversity of experiences of academic teachers. The research used the method of diagnostic survey. The obtained results indicate that the lecturers declare their readiness to conduct hybrid teaching, especially in the case of their own or students' illness, or random factors that make it impossible to conduct fulltime classes or top-down legal regulations. They appreciate the organizational support of their immediate supervisor and the opportunity to make up for classes that have not taken place in a hybrid form. The lecturers highly assess the level of their own involvement in the preparation and conduct of classes, as well as the quality of their didactic work. They see the possibility of using a hybrid approach not only in teaching but also in their selfimprovement, work organization and maintaining health. At the same time, they indicate the shortcomings and difficulties related to didactics, social, technical, and organizational aspects, as well as systemic deficiencies. Based on the results, recommendations related to the use of hybrid education in post-pandemic academic education were developed.
Go to article

Authors and Affiliations

Miłosz Wawrzyniec Romaniuk
1
Joanna Łukasiewicz-Wieleba
1

  1. The Maria Grzegorzewska University, Poland
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to find out the experiences of students of The Maria Grzegorzewska University, related to crisis remote education (remote teaching and distance learning in conditions of forced social isolation caused by SARS-CoV-2 pandemic). A case study was used. The research was limited to one institution and the method of a diagnostic survey based on the questionnaire technique was used. Recommendations for further development were made, based on disclosed advantages, disadvantages, problems and opportunities connected with crisis remote education conclusions reported by students.

Go to article

Authors and Affiliations

Miłosz Wawrzyniec Romaniuk
Joanna Łukasiewicz-Wieleba
Download PDF Download RIS Download Bibtex

Abstract

The aim of the study was to find out the experiences of academics working at The Maria Grzegorzewska University, related to crisis remote education (remote teaching and distance learning in conditions of forced social isolation caused by SARSCoV- 2 pandemic). A case study was used. The research was limited to one institution and the method of a diagnostic survey based on the questionnaire technique was used. Recommendations for further development were made, based on disclosed advantages, disadvantages, problems and opportunities connected with crisis remote education conclusions reported by academic teachers.

Go to article

Authors and Affiliations

Miłosz Wawrzyniec Romaniuk
Joanna Łukasiewicz-Wieleba
Download PDF Download RIS Download Bibtex

Abstract

Coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) continues to be a major public health concern. Nucleocapsid (N) protein is the most abundant structural protein on SARS-CoV-2 virions and induces the production of antibodies at the early stage of infection. Large-scale preparation of N protein is essential for the development of immunoassays to detect antibodies to SARS-CoV-2 and the control of virus transmission. In this study, expression of water-soluble N protein was achieved through inducing protein expression at 25°C with 0.5 mM IPTG for 12 h. Western blot and ELISA showed that recombinant N protein could be recognized by sera collected from subjects immunized with Sinovac inactivated SARS-CoV-2 vaccine. Four monoclonal antibodies namely 2B1B1, 4D3A3, 5G1F8, and 7C6F5 were produced using hybridoma technology. Titers of all four monoclonal antibodies in ELISA reached more than 1.28×10 6.0. Moreover, all monoclonal antibodies could react specifically with N protein expressed by transfection of pcDNA3.1-N into BHK-21 cells in IPMA and IFA. These results indicated that water-soluble N protein retained high immunogenicity and possessed the same epitopes as that of native N protein on virions. In addition, the preparation of water-soluble N protein and its monoclonal antibodies laid the basis for the development of immunoassays for COVID-19 detection.
Go to article

Bibliography

1. Bai Z, Cao Y, Liu W, Li J (2021) The SARS-CoV-2 nucleocapsid protein and its role in viral structure, biological functions, and a poten-tial target for drug or vaccine mitigation. Viruses 13: 1115.
2. Bates TA, Weinstein JB, Farley S, Leier HC, Messer WB, Tafesse FG (2021) Cross-reactivity of SARS-CoV structural protein antibod-ies against SARS-CoV-2. Cell Rep 34: 108737.
3. Chen K, Xiao F, Hu D, Ge W, Tian M, Wang W, Pan P, Wu K, Wu J (2020) SARS-CoV-2 nucleocapsid protein interacts with RIG-I and represses RIG-mediated IFN-β production. Viruses 13: 47.
4. Chen Y, Liu Q, Guo D (2020) Emerging coronaviruses: genome structure, replication, and pathogenesis. J Med Virol 92: 418-423.
5. Clementi N, Ghosh S, De Santis M, Castelli M, Criscuolo E, Zanoni I, Clementi M, Mancini N (2021) Viral respiratory pathogens and lung injury. Clin Microbiol Rev 34: e00103-00120.
6. Guo L, Ren L, Yang S, Xiao M, Chang D, Yang F, Dela Cruz CS, Wang Y, Wu C, Xiao Y, Zhang L, Han L, Dang S, Xu Y, Yang QW, Xu SY, Zhu HD, Xu Y,C Jin Q, Sharma L, Wang L, Wang J (2020) Profiling early humoral response to diagnose novel corona-virus disease (COVID-19). Clin Infect Dis 71: 778-785.
7. Gutiérrez-González M, Farías C, Tello S, Pérez-Etcheverry D, Romero A, Zúñiga R, Ribeiro CH, Lorenzo-Ferreiro C, Molina MC (2019) Optimization of culture conditions for the expression of three different insoluble proteins in Escherichia coli. Sci Rep 9: 16850.
8. Han Y, Luo Z, Zhai W, Zheng Y, Liu H, Wang Y, Wu E, Xiong F, Ma Y (2020) Comparison of the clinical manifestations between dif-ferent age groups of patients with overseas imported COVID-19. PLoS One 15: e0243347.
9. Ji T, Liu Z, Wang G, Guo X, Akbar khan S, Lai C, Chen H, Huang S, Xia S, Chen B, Jia H, Chen Y, Zhou Q (2020) Detection of COVID-19: A review of the current literature and future perspectives. Biosens Bioelectron 166: 112455.
10. Jin Q, Yang J, Lu Q, Guo J, Deng R, Wang Y, Wang S, Wang S, Chen W, Zhi Y, Wang L, Yang S, Zhang G (2012) Development of an immunochromatographic strip for the detection of antibodies against Porcine circovirus-2. J Vet Diagn Invest 24: 1151-1157.
11. Jin Y, Yang H, Ji W, Wu W, Chen S, Zhang W, Duan G (2020) Virology, epidemiology, pathogenesis, and control of COVID-19. Vi-ruses 12: 372.
12. Lauer SA, Grantz KH, Bi Q, Jones FK, Zheng Q, Meredith HR, Azman AS, Reich NG, Lessler J (2020) The incubation period of coro-navirus disease 2019 (COVID-19) from publicly reported confirmed cases: estimation and application. Ann Intern Med 172: 577-582.
13. Leung NH (2021) Transmissibility and transmission of respiratory viruses. Nat Rev Microbiol 19: 528-545.
14. Liao M, Yan J, Wang X, Qian H, Wang C, Xu D, Wang B, Yang B, Liu S, Zhou M, Gao Q, Zhou Q, Luo J, Li Z, Liu W (2020) De-velopment and clinical application of a rapid SARS-CoV-2 antibody test strip: A multi-center assessment across China. J Clin Lab Anal 35: e23619.
15. Liu P, Zong Y, Jiang S, Jiao Y, Yu X (2021) Development of a nucleocapsid protein-based ELISA for detection of human IgM and IgG antibodies to SARS-CoV-2. ACS Omega 6: 9667-9671.
16. Lv Y, Ma Y, Si Y, Zhu X, Zhang L, Feng H, Tian D, Liao Y, Liu T, Lu H, Ling Y (2021) Rapid SARS-CoV-2 antigen detection poten-tiates early diagnosis of COVID-19 disease. Biosci Trends 15: 93-99.
17. Mak GC, Cheng PK, Lau SS, Wong KK, Lau CS, Lam ET, Chan RC, Tsang DN (2020) Evaluation of rapid antigen test for detection of SARS-CoV-2 virus. J Clin Virol 129: 104500.
18. Malik YA (2020) Properties of coronavirus and SARS-CoV-2. Malays J Pathol 42: 3-11.
19. Meyer NJ, Gattinoni L, Calfee CS (2021) Acute respiratory distress syndrome. Lancet 398: 622-637.
20. Okba NM, Müller MA, Li W, Wang C, GeurtsvanKessel CH, Corman VM, Lamers MM, Sikkema RS, de Bruin E, Chandler FD, Yazdanpanah Y, Hingrat QL, Descamps D, Houhou-Fidouh N, Reusken CB, Bosch BJ, Drosten C, Koopmans MP, Haagmans BL (2020) Severe acute respiratory syndrome coronavirus 2-specific antibody responses in coronavirus disease patients. Emerg Infect Dis 26: 1478-1488.
21. Rump A, Risti R, Kristal ML, Reut J, Syritski V, Lookene A, Boudinot SR (2021) Dual ELISA using SARS-CoV-2 nucleocapsid pro-tein produced in E. coli and CHO cells reveals epitope masking by N-glycosylation. Biochem Biophys Res Commun 534: 457-460.
22. Singh A, Upadhyay V, Upadhyay AK, Singh SM, Panda AK (2015) Protein recovery from inclusion bodies of Escherichia coli using mild solubilization process. Microb Cell Fact 14: 41.
23. Tian Y, Zhang G, Liu H, Ding P, Jia R, Zhou J, Chen Y, Qi Y, Du J, Liang C, Zhu X, Wang A (2022) Screening and identification of B cell epitope of the nucleocapsid protein in SARS-CoV-2 using the monoclonal antibodies. Appl Microbiol Biotechnol 106: 1151-1164.
24. Vashisht K, Goyal B, Pasupureddy R, Na BK, Shin HJ, Sahu D, De S, Chakraborti S, Pandey KC (2023) Exploring the immunodomi-nant epitopes of SARS-CoV-2 nucleocapsid protein as exposure biomarker. Cureus 15: e34827.
25. Wang Y, Liu X, Tao L, Xu P, Gao X, Li H, Yang Z, Wu W (2017) Expression and immunogenicity of VP40 protein of ZEBOV. Arch Iran Med 20: 246-250.
26. Wang YB, Li YH, Li QM, Xie WT, Guo CL, Guo JQ, Deng RG, Zhang GP (2019) Development of a blocking immunoperoxidase monolayer assay for differentiation between pseudorabies virus-infected and vaccinated animals. Pol J Vet Sci 44: 717-723.
27. Zeng W, Liu G, Ma H, Zhao D, Yang Y, Liu M, Mohammed A, Zhao C, Yang Y, Xie J, Ding C, Ma X, Weng J, Gao Y, He H, Jin T (2020) Biochemical characterization of SARS-CoV-2 nucleocapsid protein. Biochem Biophys Res Commun 527: 618-623.
28. Zhou P, Yang XL, Wang XG, Hu B, Zhang L, Zhang W, Si HR, Zhu Y, Li B, Huang CL, Chen HD, Chen J, Luo Y, Guo H, Jiang RD, Liu MQ, Chen Y, Shen XR, Wang X, Zheng XS, Zhao K, Chen QJ, Deng F, Liu LL, Yan B, Zhan FX, Wang YY, Xiao GF, Shi ZL (2020) A pneumonia outbreak associated with a new coronavirus of probable bat origin. Nature 579: 270-273.
Go to article

Authors and Affiliations

Y.B. Wang
1
S.W. Wang
2
Q.Y. Jin
3
L.P. Chen
4
F.Q. Zhang
1
J.J. Shi
1
Y. Yin
5
Z.X. Fan
1
X.Y. Liu
6
L.P. Wang
6
P. Li
6

  1. School of Public Health, Xinxiang Medical University, Xinxiang 453003, P.R. China
  2. School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang 453003, P.R. China
  3. Henan Provincial Key Laboratory of Animal Immunology, Henan Academy of Agricultural Sciences, Zhengzhou 450002, P.R. China
  4. Gushi County Center for Animal Disease Control and Prevention, Xinyang 465200, P.R. China
  5. Mingde College of Xinxiang Medical University, Xinxiang 453003, P.R. China
  6. School of Biological Engineering, Xinxiang University, Xinxiang 453003, P.R. China
Download PDF Download RIS Download Bibtex

Abstract

This article presents a low-profile and flexible dualband AMC Antenna operating at 2.45/ 5.8 GHz for wireless local area network (WLAN) on-body antenna applications using textile materials. A dual-band artificial magnetic conductor (AMC) structure with a dual hexagonal shape was used to reduce back radiation, therefore specific absorption rate (SAR), and improve the antenna performance parameters. To study the antenna/body interaction, a suitable comprehension and detailed studies of the wave propagation in the vicinity of the human arm in different meteorological conditions were carried out to demonstrate the effects of the skin condition on the antenna performance parameters. The simulation and measurement results indicate that electromagnetic communication on wet skin is viable. Acceptable SAR values were obtained, revealing that the body is well immune from the antenna electromagnetic radiation in functional wearable conditions. The proposed wearable AMC antenna provided engaging simulation and measurement results. It satisfies users' comfort and safety properties, making it a good candidate for WLAN/WBAN applications.
Go to article

Authors and Affiliations

Wahida Bouamra
1
Imen Sfar
1
Ameni Mersani
1
Lotfi Osman
2
Jean-Marc Ribero
3

  1. Department of Physics, Faculty of Sciences of Tunis, University of Tunis El Manar, Tunisia
  2. Higher School of Communication of Tunis, University of Carthage, Tunis, Tunisia
  3. University Nice-Sophia Antipolis, Sophia Antipolis, France
Download PDF Download RIS Download Bibtex

Abstract

Magnetic nanoparticle’s different applications in nanomedicine, due to their unique physical properties and biocompatibility, were intensively investigated. Recently, Fe₃O₄ nanoparticles, are confirmed to be the best sonosensitizers to enhance the performance of HIFU (high intensity focused ultrasound). They are also used as thermo-sensitizers in magnetic hyperthermia. A new idea of dual, magneto-ultrasound, coupled hyperthermia allows the ultrasound intensity to be reduced from the high to a moderate level. Our goal is to evaluate the enhancement of thermal effects of focused ultrasound of moderate intensity due to the presence of nanoparticles. We combine experimental results with numerical analysis. Experiments are performed on tissue-mimicking materials made of the 5% agar gel and gel samples containing Fe₃O₄ nanoparticles with φ  = 100 nm with two fractions of 0.76 and 1.53% w/w. Thermocouples registered curves of temperature rising during heating by focused ultrasound transducer with acoustic powers of the range from 1 to 4 W. The theoretical model of ultrasound-thermal coupling is solved in COMSOL Multiphysics. We compared the changes between the specific absorption rates (SAR) coefficients determined from the experimental and numerical temperature rise curves depending on the nanoparticle fractions and applied acoustic powers.We confirmed that the significant role of nanoparticles in enhancing the thermal effect is qualitatively similarly estimated, based on experimental and numerical results. So that we demonstrated the usefulness of the FEM linear acoustic model in the planning of efficiency of nanoparticle-mediated moderate hyperthermia.
Go to article

Bibliography

  1.  E. Ben-Hur, B.V. Bronk, and M.M. Elkind, “Thermally enhanced radiosensitivity of cultured Chinese hamster cells”, Nat. New Biol. 238, 209–211 (1972).
  2.  M.W. Dewhirst, E.J. Ozimek, J. Gross, and T.C. Cetas, “Will hyperthermia conquer the elusive hypoxic cell? Implications of heat effects on tumor and normal-tissue microcirculation”, Radiology 137(3), 811–817 (1980).
  3.  B. Hildebrandt, P. Wust, O. Ahlers, A. Dieing, G. Sreenivasa, T. Kerner, R. Felix, and H. Riess, “The cellular and molecular basis of hyperthermia”, Crit. Rev. Oncol./Hematol. 43(1), 33–56 (2002).
  4.  Z. Izadifar, P. Babyn, and D. Chapman, “Mechanical and Biological Effects of Ultrasound: A Review of Present Knowledge”, Ultrasound Med. Biol. 43(6), 1085–110 (2017).
  5.  A. Mizera and B. Gambin, “Stochastic modeling of the eukaryotic heat shock response”, J. Theor. Biol. 265, 455–466 (2010).
  6.  S.Z. Child, B. Vives, C.W. Fridd, J.D. Hare, C.A. Linke, H.T. Davis, and E.L. Carstensen, “Ultrasonic treatment of tumors— II: Moderate hyperthermia”, Ultrasound Med. Biol. 6(4), 341–344 (1980).
  7.  G. ter Haar, “The Resurgence of Therapeutic Ultrasound – A 21st Century Phenomenon”, Ultrasonics, 48(4), 233 (2008).
  8.  B. Gambin, T. Kujawska, E. Kruglenko, A. Mizera, and A. Nowicki, “Temperature Fields Induced by Low Power Focused Ultrasound in Soft Tissues During Gene Therapy, Numerical Predictions and Experimental Results”, Arch. Acoust. 34(4), 445–459 (2009).
  9.  A. Mizera, and B. Gambin, “Modelling of ultrasound therapeutic heating and numerical study of the dynamics of the induced heat shock response”, Commun. Nonlinear Sci. Numer. Simul. 16(5), 2342–2349 (2011).
  10.  A. Sohail, Z. Ahmad, O.A. Bég, S. Arshad, and L. Sherin, “A review on hyperthermia via nanoparticle-mediated therapy”, Bull. Cancer 104(5), 452–461 (2017).
  11.  S. Taghizadeh V. Alimardani, P.L. Roudbali, Y. Ghasemi, and E. Kaviani, “Gold nanoparticles application in liver cancer”, Photodiagnosis Photodyn. Ther. 25, 389–400 (2019).
  12.  N.T.K. Thanh, Magnetic Nanoparticles: From Fabrication to Clinical Applications, CRC Press, Taylor & Francis, Boca Raton, London, New York, 2012.
  13.  S.B. Devarakonda, M.R. Myers, M. Lanier, C Dumoulin, and R.K. Banerjee, “Assessment of gold nanoparticle-mediatedenhanced hyperthermia using mr-guided high-intensity focused ultrasound ablation procedure”, Nano Lett. 17, 2532–2538 (2017).
  14.  S.B. Devarakonda, M.R. Myers, and R.K. Banerjee, “Comparison of Heat transfer enhancement between magnetic and gold nanoparticles during HIFU sonication”, ASME J. Biomech. Eng. 140, 081003, (2018).
  15.  K. Sztandera, M. Gorzkiewicz, and B. Klajnert-Maculewicz, “Gold Nanoparticles in Cancer Treatment”, Mol. Pharm. 16(1), 1–23 (2019).
  16.  S. Sengupta and V.K. Balla, “A review on the use of magnetic fields and ultrasound for non-invasive cancer treatment”, J. Adv. Res. 14, 97–111 (2018).
  17.  P. Das, M. Colombo, and D. Prosperi, “Recent advances in magnetic fluid hyperthermia for cancer therapy”, Colloid Surf. B: Biointerfaces 174, 42–55 (2019).
  18.  N.T.K. Thanh, Clinical Applications of Magnetic Nanoparticle, CRC Press, Taylor & Francis, Boca Raton, London, New York, 2018.
  19.  A. Miaskowski, B. Sawicki, and M. Subramanian, “Singledomain nanoparticle magnetic power losses calibrated with calorimetric measurements”, Bull. Pol. Acad. Sci. Tech. Sci. 66(4), 509–516 (2018).
  20.  A. Józefczak, K. Kaczmarek, T. Hornowski, M. Kubovˇcíková, Z. Rozynek, M. Timko, and A. Skumiel, “Magnetic nanoparticles for enhancing the effectiveness of ultrasonic hyperthermia”, Appl. Phys. Lett. 108(26), 263701 (2016).
  21.  K. Kaczmarek, T. Hornowski, R. Bielas, D. Zak, M. Timko, and A. Józefczak, “Dependence of ultrasonic and magnetic hyperthermia on the concentration of magnetic nanoparticles”, Acta Phys. Pol. A 133, 716–718, (2018).
  22.  E. Kruglenko E., M. Krajewski, R. Tymkiewicz, J. Litniewski, and B. Gambin, “Magnetic and ultrasonic thermal effects of magnetic nanoparticles in a tissue phantom”, Applications of Electromagnetics in Modern Techniques and Medicine (PTZE), Janow Podlaski, Poland, 2019, pp. 89–92.
  23.  K. Kaczmarek, T. Hornowski, I. Antal, M. Rajnak, M. Timko, and A. Józefczak, “Sono-magnetic heating in tumor phantom”, J. Magn. Magn. Mater. 500, 166396 (2020).
  24.  M. Sadeghi-Goughari, S. Jeon, and H. Kwon, “Analytical and Numerical Model of High Intensity Focused Ultrasound Enhanced with Nanoparticles”, IEEE Trans. Biomed. Eng. (2020).
  25.  M. Sadeghi-Goughari, S. Jeon, and H.J. Kwon, “Magnetic nanoparticles-enhanced focused ultrasound heating: size effect, mechanism, and performance analysis”, Nanotechnology 31(24), 24510 (2020).
  26.  B. Gambin, E. Kruglenko, R. Tymkiewicz, and J. Litniewski, “Ultrasound assessment of the conversion of sound energy into heat in tissue phantoms enriched with magnetic micro- and nanoparticles”, Med. Phys. 46(10), 4361–4370 (2019).
  27.  T. Drakos, M. Giannakou, G. Menikou, C. Ioannides, and C. Damianou, “An improved method to estimate ultrasonic absorption in agar- based gel phantom using thermocouples and MR thermometry”, Ultrasonics 103, 106089 (2020), doi: 10.1016/j.ultras.2020.106089.
  28.  E. Kruglenko, I. Korczak, J. Litniewski, and B. Gambin, “Ultrasound Thermal Effect Enriched by Adding of Micro and Nano Particles to the Agar-Gel Tissue Mimicking Materials”, 2018 Joint Conference – Acoustics Ustka, Poland, 2018, pp. 1–6.
  29.  T. Kujawska, W. Secomski, E. Kruglenko, K. Krawczyk, and A. Nowicki, “Determination of Tissue Thermal Conductivity by Measuring and Modeling Temperature Rise Induced in Tissue by Pulsed Focused Ultrasound”, Plos One 9, e94929 (2014).
  30.  J. Lyklema, “The bottom size of colloids”, Bull. Pol. Acad. Sci. Tech. Sci. 53(4), 317–323 (2005), doi: 10.24425/123928.
  31.  P.C. Morais, “From magnetic fluids up to complex biocompatible nanosized magnetic systems”, Bull. Pol. Acad. Sci. Tech. Sci. 56(3), 253–262 (2008).
  32.  M. Zhang, Z. Che, J. Chen, H. Zhao, L. Yang, Z. Zhong, and J. Lu, “Experimental Determination of Thermal Conductivity of Water-Agar Gel at Different Concentrations and Temperatures”, J. Chem. Eng. Data 56(4), 859–864 (2011).
  33.  K. Kaczmarek, T. Hornowski, M. Kubovčíková, M. Timko, M. Koralewski, and A. Józefczak, “Heating Induced by Therapeutic Ultrasound in the Presence of Magnetic Nanoparticles”, ACS Appl. Mater. Interfaces 10(14), 11554–11564 (2018).
  34.  B. Gambin and E. Kruglenko, “Temperature Measurement by Statistical Parameters of Ultrasound Signal Backscattered from Tissue Samples”, Acta Phys. Pol. 128(3), A72–A7867 (2015).
  35.  P. Karwat, T. Kujawska, P.A. Lewin, W. Secomski, B. Gambin, and J. Litniewski, “Determining temperature distribution in tissue in the focal plane of the high (>100 W/cm2) intensity focused ultrasound beam using phase shift of ultrasound echoes”, Ultrasonics 65, 211–219 (2016).
  36.  S.C. Brüningk, I. Rivens, P. Mouratidis, and G. Ter Haar, “Focused Ultrasound-Mediated Hyperthermia in Vitro: An Experimental Arrangement for Treating Cells under Tissue-Mimicking Conditions”, Ultrasound Med. Biol. 45(12), 3290–3297 (2019).
  37.  H.H. Pennes, “ Analysis of Tissue and Arterial Blood Temperatures in the Resting Human Forearm”, J. Appl. Physiol. 1(2), 93–122 (1948).
  38.  COMSOL Multiphysics 4.3b, application ID: 12659, “Focused Ultrasound Induced Heating in Tissue Phantom” [Online]. Available: https://www.comsol.com/model/focused-ultrasoundinduced-heating-in-tissue-phantom-12659.
  39.  C.R. Dillon, U. Vyas, A. Payne, D.A. Christensen, and R.B. Roemer, “An analytical solution for improved HIFU SAR estimatOnly in the Agar sampleion”, Phys. Med. Biol. 57, 4527‒4544 (2012).
  40.  S.A. Sapareto and W.C. Dewey, “Thermal dose determination in cancer therapy”, Int. J. Radiat. Oncol. Biol. Phys. 10, 787–800 (1984).
  41.  B. Gambin, E. Kruglenko, T. Kujawska, and M. Michajłow, “Modeling of tissues in vivo heating induced by exposure to therapeutic ultrasound”, Acta Phys. Pol. A 119, 950–956 (2011).
  42.  H. Morris, I. Rivens, A. Shaw and and G. ter Haar, “Investigation of the viscous heating artifact arising from the use of thermocouples in a focused ultrasound field”, Phys. Med. Biol. 53, 4759–4776 (2008).
  43.  C. Bera, S. Devaraconda, V. Kumar, A. Ganguli, and R. Banerjee, “The mechanism of nanoparticle-mediated enhanced energy transfer during high-intensity focused ultrasound sonication”, Phys. Chem. Chem. Phys. 19(29), 19075–19082 (2017).
Go to article

Authors and Affiliations

Barbara Gambin
1
ORCID: ORCID
Eleonora Kruglenko
1

  1. Institute of Fundamental Technological Research, Polish Academy of Sciences, ul. Pawińskiego 5B, 02-106 Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Illnesses with aerosol mode of transmission dominate in the structure of infectious diseases. Influenced by natural, social and biological factors, epidemiological characteristics of the infectious diseases change, that’s why the objective of this research was to determine modern peculiar features of the epide-miological situation regarding viral infections with aerosol transmission in Ukraine. Influenza incidence ranged from 31.14‒184.45 per 100 thousand people, other acute respiratory viral infections from 13685.24‒ 18382.5. Epidemic process of measles was characterized by increasing incidence in 2018 and 2019. In Ukraine, there is a tendency to reduce the incidence of rubella and mumps (р <0.05). The positive effect of immunization on the incidence of mumps and rubella has been established. Vaccination against measles cannot be considered as evidence of immunity against measles. The demographic situation in Ukraine may indirectly influence the intensity of the epidemic situation of viral infections with aerosol transmission.
Go to article

Bibliography

1. Naz R., Gul A., Urooj A., Amin S., Fatima Z.: Etiology of acute viral respiratory infections common in Pakistan: A review. Rev Med Virol. 2019; 29 (2): e2024. doi: 10.1002/rmv.2024
2. Somes M.P., Turner R.M., Dwyer L.J., Newall A.T.: Estimating the annual attack rate of seasonal influenza among unvaccinated individuals: A systematic review and meta-analysis. 2018; 36 (23): 3199–3207. doi: 10.1016/j.vaccine.2018.04.063
3. Obando-Pacheco Р., Justicia-Grande J., Rivero-Calle I., et al.: Respiratory Syncytial Virus Seasonality: A Global Overview. J Infect Dis. 2018; 217 (9): 1356–1364. doi: 10.1093/infdis/jiy056
4. Shafagati N., Williams J.: Human metapneumovirus ‒ what we know now. 2018; 7: 135. doi: 10.12688/frch.12625.1
5. Ison M.G., Hayden R.T.: Microbiol Spectr. 2016; 4 (4). doi: 10.1128/microbiolspec
6. Singh S., Singh N., Ahirwar R., Sagar S.K., Mondal P.R.: Impact of COVID-19 Pandemic on Mental Health of General Population and University Students Across the World: A Review. Online J Health Allied Scs. 2021; 20 (2): 2. Available at URL: https://www.ojhas.org/issue78/2021-2-2.html
7. Guo Y.R., Cao Q.D., Hong Z.S., et al.: The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak — an update on the status. Mil Med Res. 2020; 7 (1): doi: 10.1186/ s40779-020-00240-0
8. Rota A., Moss W.J., Takeda M., et al.: Measles. Nat Rev Dis Primers. 2016; 2: 16049. doi: 10.1038/nrdp.2016.49
9. Lambert N., Strebel P., Orenstein W., et al.: Rubella. Lancet. 2015; 385 (9984): 2297–2307. doi: 10.1016/S0140-6736(14)60539-0
10. Su S.B., Chang H.L., Chen A.K.: Current Status of Mumps Virus Infection: Epidemiology, Pathogenesis, and Vaccine. Int J Environ Res Public Health. 2020; 17 (5): doi: 10.3390/ijerph17051686
11. Podavalenko A.P., Zadorozhna V.I., Petrenko T.Ie, Podavalenko O.V.: Socio-hygienic monitoring in the system of epidemiological surveillance of airborne infections. Ukrainskyi medychnyi chasopys. 2016; 1 (111): 98‒101.
12. Buchan A., Hottes T.S., Rosella L.C., et al.: Contribution of influenza viruses to medically attended acute respiratory illnesses in children in high-income countries: a meta-analysis. Influenza Other Respir Viruses. 2016; 10 (6): 444–454. doi: 10.1111/irv.12400
13. Nair H., BrooksA., Katz M., et al.: Global burden of respiratory infections due to seasonal influenza in young children: a systematic review and meta-analysis. Lancet. 2011; 378 (9807): 1917–1930. doi: 10.1016/S0140-6736(11)61051-9
14. Principi N., Esposito S.: Severe influenza in children: incidence and risk factors. Expert Rev Anti Infect Ther. 2016; 14 (10): 961–968. doi: 10.1080/14787210.2016.1227701
15. Malysh N.G., Matsiuk M.V., Senchenko A.V.: Modern features of the epidemic process of viral infections with aerosol transmission in Sumy oblast. Eastern Ukrainian Medical Journal. 2021; 9 (1): 115–123.
16. Lapić I., Rogić D., Šegulja D., Kralik Oguić S., Knežević J.: The reliability of SARS-CoV-2 IgG antibody testing — a pilot study in asymptomatic health care workers in a Croatian university hospital. Croat Med 2020; 61: 485–490. doi: 10.3325/cmj.2020.61.485
17. Moss W.J.: Lancet. 2017; 390 (10111): 2490–2502. doi: 10.1016/S0140-6736(17)3
18. Javelle E., Colson P., Parola P., Raoult D.: Measles, the need for a paradigm shift. Eur J Epidemiol. 2019; 34 (10): 897–915. doi: 10.1007/s10654-019-00569-4
19. Metz J.A., Finn A.: Influenza and humidity — Why a bit more damp may be good for you! J Infect. 2015; 71 (1): S54–58. doi: 10.1016/j.jinf.2015.04.013
20. Kostinov M.P., Shmitko A.D., Bocharova I.I., et al.: The level of IgG antibodies to the measles virus in the umbilical cord blood of newborns, taking into account the age of the mothers. Epidemiologiya i infektsionnyie bolezni. 2014; 3: 30–34.
21. Tyor W., Harrison T.: Mumps and rubella. Handb Clin Neurol. 2014; 123: 591–600.
22. Bankamp B., Hickman C., Icenogle J.P., Rota P.A.: Successes and challenges for preventing measles, mumps and rubella by vaccination. Curr Opin Virol. 2019; 34: 110–116. doi: 10.1016/j.coviro.2019.01.002
23. Lewnard A., Grad Y.H.: Vaccine waning and mumps re-emergence in the United States. Sci Transl Med. 2018; 10 (433): eaаo5945. doi: 10.1126/scitranslmed.аao5945
24. Marlow A., Marin M., Moore K., Patel M.: CDC guidance for use of a third dose of MMR vaccine during outbreaks. J. Public Health Manag Pract. 2020; 26: 109–115.
25. Rubin S., Eckhaus M., Rennick L.J., Connor B.G.G., Duprex W.P.: Molecular biology, pathogenesis and pathology of mumps virus. J Pathol. 2015; 235 (2): 242–252. doi: 10.1002/path.4445
26. Lambert N., Strebel, Orenstein W., et al.: Rubella. Lancet. 2015; 385 (9984): 2297–2307. doi: 10.1016/ S0140-6736(14)60539-0
27. Williams G.A., Bacci S., Shadwick R., et al.: Measles among migrants in the European Union and the European Economic Area. Scand J Public Health. 2016; 44 (1): 6–13. doi: 10.1177/1403494815610182
Go to article

Authors and Affiliations

Nina Malysh
1
Alla Podavalenko
2
Victoriya Zadorozhna
3
Svetlana Biryukova
4

  1. Department of Infectious Diseases with Epidemiology, Sumy State University, Sumy, Ukraine
  2. Department of Hygiene, Epidemiology and Occupational Diseases, Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
  3. SI «Institute of Epidemiology and Infectious Diseases named after L.V. Gromashevsky National Academy of Medical Sciences of Ukraine», Kyiv, Ukraine
  4. Department of Microbiology, Bacteriology, Virology, Clinical and Laboratory Immunology, Kharkiv Medical Academy of Postgraduate Education, Kharkiv, Ukraine
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of the questionnaire research carried out after the first and repeated after the second semester of crisis remote education, conducted at The Maria Grzegorzewska University. Students participating in the study indicate a significant increase in their IT competences and the level of remote education. They declare a similar, high level of commitment and independence during classes. They indicate that commitment, activity, contact with the lecturers, regularity and quality of work, as well as the adequacy of the grades given are better during traditional education, although their timeliness is higher during distance education. The computer equipment of students and the way of accessing the Internet have not changed significantly. 20% of respondents admitted to using unauthorized assistance during exams. In the statements of students, on the one hand, there is a desire to return to social contacts and traditional classes, and on the other hand, a desire to maintain remote education, associated with the comfort of home-based learning and independence.
Go to article

Bibliography

[1] M. W. Romaniuk, “Digital Competences of Maria Grzegorzewska Academy of Special Education Students – Method and Results of a Survey.” International Journal of Electronics and Telecommunications, 61 (3), 2015, pp. 267-272, DOI: 10.1515/eletel-2015-0035.
[2] M. Händel, M. Stephan, M. Gläser-Zikuda, B. Kopp, S. Bedenlier and A. Ziegler, “Digital readiness and its effects on higher education students’ socio-emotional perceptions in the context of the COVID-19 pandemic.” 22 July 2020, DOI: 10.31234/osf.io/b9pg7
[3] D. A. Bardzińska, ”Kompetencje informatyczne studentów kierunków pedagogicznych,” in Przygotowanie nauczycieli do nowych wyzwań edukacyjnych. Problemy współczesnej edukacji, J. Bojanowicz, K. Ziębakowska-Cecot, Ed. Radom: Wydawnictwo Uniwersytetu Technologiczno-Humanistycznego w Radomiu, 2018, pp. 33-43
[4] M. W. Romaniuk and J. Łukasiewicz-Wieleba, ”Zdalna edukacja kryzysowa w APS w okresie pandemii COVID-19.” Warszawa, 2020. DOI: 10.13140/RG.2.2.18059.52006.
[5] M. W. Romaniuk and J. Łukasiewicz-Wieleba, ”Crisis Remote Education at The Maria Grzegorzewska University During Social Isolation in the Opinions of Students.” International Journal of Electronics and Telecommunications, 66 (4), 2020, pp. 807-812, DOI: 10.24425/ijet.2020.135675.
[6] M. W. Romaniuk, J. Łukasiewicz-Wieleba and S. Kohut, ”Nauczyciele akademiccy wobec kryzysowej edukacji zdalnej.” E-Mentor, 5 (87), 2020, pp. 15-26, DOI: 10.15219/em87.1489.
[7] M. W. Romaniuk and J. Łukasiewicz-Wieleba, ”Crisis Remote Education at The Maria Grzegorzewska University During Social Isolation in the Opinions of Academic Teachers.” International Journal of Electronics and Telecommunications 66 (4), 2020, pp. 801-806, DOI: 10.24425/ijet.2020.135673.
[8] M. W. Romaniuk, ”E-learning in College on the Example of Academy of Special Education.” International Journal of Electronics and Telecommunications, 61 (1), 2015, pp. 25-29, DOI: 10.1515/eletel-2015-0003.
[9] J. M. Mischke, “Przeszkody, powody i utracone korzyści. E-nauczanie w polskich uczelniach wyższych.” in E-edukacja–analiza dokonań i perspektyw rozwoju, M. Dąbrowski, M. Zając, Ed. Warszawa: Fundacja Promocji i Akredytacji Kierunków Ekonomicznych, 2009, pp. 19-24.
[10] J. Kozłowska, ”E-learning jako forma doskonalenia studentów uczelni wyższych.” Rynek–Społeczeństwo–Kultura, 1, 2017, pp. 41-48.
[11] M. Rebizant, ”Nauczanie hybrydowe jako jedna z form kształcenia w uczelni wyższej w opinii studentów Akademii Pedagogiki Specjalnej,” in Pedagogika dialogu. Emancypacyjny potencjał dialogu, D. M. Jankowska, Ed. Warszawa: Wydawnictwo Akademii Pedagogiki Specjalnej, 2017, pp. 252-265
[12] M. Jabłonowska and J. Wiśniewska, ”Wykorzystanie otwartych zasobów edukacyjnych w kształceniu akademickim,” in: Cyberprzestrzeń-Człowiek-Edukacja. T. 5, Otwarte zasoby edukacyjne w perspektywie pedagogicznej, M. Tanaś, S. Galanciak, Ed. Kraków: Oficyna Wydawnicza Impuls, 2020, pp. 93-108
[13] S. Kuruliszwili, ”Samokształcenie i technologie informacyjne – zmienność form i trudność klasyfikacji,” Edukacja Ustawiczna Dorosłych, vol. 104, nr 1, 2019, pp. 39-50
[14] A. H. Rohayani, “A literature review: readiness factors to measuring e-learning readiness in higher education.” Procedia Computer Science, 59, 2015, pp. 230-234.
[15] A. A. M. Al-Araibi, M. Naz’ri bin Mahrin, R. C. M. Yusoff and S. B. Chuprat, “A model for technological aspect of e-learning readiness in higher education.” Education and Information Technologies, 24 (2), 2019, pp. 1395-1431.
[16] L. Pokrzycka, ”Efektywność e-nauczania w szkolnictwie wyższym. Studia przypadków.” Zarządzanie mediami 7 (1), 2019, pp. 15-27. DOI: 10.4467/23540214ZM.18.019.10571
[17] L. R. Amir, I. Tanti, D. A. Maharani, Y. S. Wimardhani, V. Julia, B. Sulijaya and R. Puspitawati, ”Student perspective of classroom and distance learning during COVID-19 pandemic in the undergraduate dental study program Universitas Indonesia.” BMC medical education, 20(392), 2020, pp. 1-8. DOI: 10.1186/s12909-020-02312-0
[18] R. Kalman, M. Macias Esparza and C. Weston, ”Student Views of the Online Learning Process during the COVID-19 Pandemic: A Comparison of Upper-Level and Entry-Level Undergraduate Perspectives.” Journal of Chemical Education, 97(9), 2020, pp. 3353-3357, DOI: 10.1021/acs.jchemed.0c00712
[19] D. Leżański, B. Marek and J. Sobolewska, ”Kształcenie zdalne. Historia prawdziwa oczami studentów.” 2020, Warszawa
[20] K. Hill and R. Fitzgerald, ”Student perspectives of the impact of COVID-19 on learning.” All Ireland Journal of Higher Education, 12 (2), 2020.
[21] A. Elzainy, A. El Sadik and W. Al Abdulmonem, “Experience of e-learning and online assessment during the COVID-19 pandemic at the College of Medicine, Qassim University.” Journal of Taibah University Medical Sciences, 15(6), 2020, pp. 456–462, DOI: 10.1016/j.jtumed.2020.09.005
[22] M. Trzcińska-Król, “Students with special educational needs in distance learning during the COVID-19 pandemic – parents’ opinions.” Interdisciplinary Contexts of Special Pedagogy, no. 29, 2020, pp. 173–191. DOI: 10.14746/ikps.2020.29.08
[23] J. Wiśniewska and J. Łukasiewicz-Wieleba, Budowanie i wzmacnianie relacji w edukacji zdalnej przez nauczycieli młodszych klas szkoły podstawowej. E-mentor, 1 (88), 2021, pp. 37-46, DOI: 10.15219/em88.1501
[24] A. Thakur, “Mental Health in High School Students at the Time of COVID-19: A Student’s Perspective.” Journal of the American Academy of Child and Adolescent Psychiatry, 59 (12), 2020, pp. 1309-1310, DOI: 10.1016/j.jaac.2020.08.005.
Go to article

Authors and Affiliations

Miłosz Wawrzyniec Romaniuk
1
Joanna Łukasiewicz-Wieleba
1

  1. The Maria Grzegorzewska University, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

Coronaviruses present a considerable concern for humans and animals. The current world- wide pandemic of SARS-CoV-2 virus showed many gaps in understanding of coronaviruses spread and transmission. Because of lack of effective vaccine against SARS-CoV-2 the only preventive measures are represented by wearing protective masks and gloves thus limiting potential risk of contact with the airborne virus. Inversely, the limited time of protective function of the masks presents another drawback of their use. Therefore, the application of disinfection agent dispersed on the surface of protective masks may enhance their effectivity and safety of their application. The aim of the study was to examine the virucidal efficacy of low-concentra- ted sodium hypochlorite dispersed using ultrasonic humidifier on the surface of surgery masks. The study was conducted using SARS-CoV-2 surrogate virus, namely porcine epidemic diarrhea virus (PEDV) representing a model with similar biophysical properties and genomic structure to human coronaviruses. Five different concentrations of the disinfectant with different content of sodium hypochlorite were selected for the study. A final concentration of 0.228 g/L sodium hypochlorite effectively inactivated the PED virus and may support the biosafety of masks usage.

Go to article

Authors and Affiliations

M. Antas
A. Szczotka-Bochniarz
G. Woźniakowski
Download PDF Download RIS Download Bibtex

Abstract

The article presents the results of the questionnaire research carried out after the first and repeated after the second semester of crisis distance education, conducted at the Academy of Special Education. Academic lecturers participating in the study indicate a significant decrease in the level of commitment, activity, the regularity of work and the quality of performing tasks presented by students. Lecturers benefit from training and technical support organized by the university. They feel an acute inability to contact students personally, but appreciate the time savings and no need to travel to work. The respondents point to the problem of controlling student integrity during remote examinations. Growing experience in remote education results in higher IT competences and conviction to this type of teaching.
Go to article

Bibliography

[1] P. Topol, ”Metody i narzędzia kształcenia zdalnego w polskich uczelniach w czasie pandemii COVID-19 – Część 1, Dyskusja 2020.” Studia Edukacyjne (58), 2020, pp. 69-83. DOI: 10.14746/se.2020.58.4
[2] M. W. Romaniuk and J. Łukasiewicz-Wieleba, ”Zdalna edukacja kryzysowa w APS w okresie pandemii COVID-19.” 2020, Warszawa, DOI: 10.13140/RG.2.2.18059.52006.
[3] M. W. Romaniuk, J. Łukasiewicz-Wieleba and S. Kohut, ”Nauczyciele akademiccy wobec kryzysowej edukacji zdalnej.” E-Mentor, 5 (87), 2020, pp. 15-26, DOI: 10.15219/em87.1489.
[4] A. Karwińska and M. Karwiński, ”Zdalna edukacja uniwersytecka w czasach pandemii: wyzwania i reakcje: komunikat z badań sondażowych.” Kultura i Rozwój, (7), 2019, pp. 215-243.
[5] B. Jankowiak and S. Jaskulska, ”Dobrostan nauczycieli i nauczycielek a ich postawy wobec kształcenia na odległość w czasie pandemii COVID-19.” Przegląd Pedagogiczny, (1), 2020, pp. 219-232.
[6] P. Topol, ”Metody i narzędzia kształcenia zdalnego w polskich uczelniach w czasie pandemii COVID-19 – Część 2, Dyskusja 2020.” Studia Edukacyjne, (59), 2020, pp. 103-117. DOI: 10.14746/se.2020.59.8
[7] M. W. Romaniuk and J. Łukasiewicz-Wieleba, ”Crisis Remote Education at The Maria Grzegorzewska University During Social Isolation in the Opinions of Students.” International Journal of Electronics and Telecommunications, 66 (4), 2020, pp. 807-812, DOI: 10.24425/ijet.2020.135675.
[8] P. Długosz, ”Raport z II etapu badań studentów UP. Opinia na temat zdalnego nauczania i samopoczucia psychicznego.”, 2020.
[9] P. Długosz and G. Foryś, ”Zdalne nauczanie na Uniwersytecie Pedagogicznym im. Komisji Edukacji Narodowej w Krakowie z perspektywy studentów i wykładowców.”, 2020.
[10] L. Mishra, T. Gupta and A. Shree, ”Online teaching-learning in higher education during lockdown period of COVID-19 pandemic.” International Journal of Educational Research Open, 1, 2020, 100012. DOI: 10.1016/j.ijedro.2020.100012
[11] W. Bao, “COVID‐19 and online teaching in higher education: A case study of Peking University.” Human Behavior and Emerging Technologies, 2 (2), 2020, pp. 113-115, DOI: 10.1002/hbe2.191
[12] D. Salto, “COVID-19 and Higher Education in Latin America: Challenges and possibilities in the transition to online education.” eLearn, 2020 (9). DOI: 10.1145/3424971.3421751
[13] J. Crawford, K. Butler-Henderson, J. Rudolph, B. Malkawi, M. Glowatz, R. Burton, P. Magni and S. Lam, ”COVID-19: 20 countries' higher education intra-period digital pedagogy responses.” Journal of Applied Learning & Teaching, 3 (1), 2020, pp. 1-20. DOI: 10.37074/jalt.2020.3.1.7
[14] G. Marinoni, H. Van’t Land and T. Jensen, “The impact of Covid-19 on higher education around the world. IAU Global Survey Report.”, 2020
[15] M.W. Romaniuk and J. Łukasiewicz-Wieleba, ”Crisis Remote Education at The Maria Grzegorzewska University During Social Isolation in the Opinions of Academic Teachers.” International Journal of Electronics and Telecommunications 66 (4), 2020, pp. 801-806, DOI: 10.24425/ijet.2020.135673.
[16] M. W. Romaniuk, “E-learning in College on the Example of Academy of Special Education.” International Journal of Electronics and Telecommunications, 61 (1), 2015, pp. 25-29, DOI: 10.1515/eletel-2015-0003.
[17] C. Sánchez-Cruzado, R. Santiago Campión and M. T. Sánchez-Compaña, ”Teacher Digital Literacy: The Indisputable Challenge after COVID-19.” Sustainability, 13 (4), 2021, 1858. DOI: 10.3390/su13041858
[18] W. Cellary, ”Edukacja w świetle pandemii.” In: Nauczanie po pandemii. Nowe pytania czy nowe odpowiedzi na stare pytania? Warszawa: Instytut Problemów Współczesnej Cywilizacji im. Marka Dietricha LXXII, 2020, pp. 15-23.
[19] M. W. Romaniuk, “Digital Competences of Maria Grzegorzewska Academy of Special Education Students – Method and Results of a Survey.” International Journal of Electronics and Telecommunications, 61 (3), 2015, pp. 267-272, DOI: 10.1515/eletel-2015-0035.
[20] P. Du Preez and L. Le Grange, “The COVID-19 pandemic, online teaching/learning, the digital divide and epistemological access.” In: Re-thinking the Humanities Curriculum in the Time of COVID-19, L. Ramrathan, N. Ndimande-Hlongwa, N. Mkhize, J. A. Smit, Ed. Durban: CSSALL Publishers, 2020, pp. 90-106.
[21] K. Bertol, ”Nihil novi sub sole? Stare pytania. Jakie odpowiedzi?” In: Nauczanie po pandemii. Nowe pytania czy nowe odpowiedzi na stare pytania? Warszawa: Instytut Problemów Współczesnej Cywilizacji im. Marka Dietricha LXXII, 2020, s. 9-13.
[22] F. R. A. Ahmed, T. E. Ahmed, R. A. Saeed, H. Alhumyani, S. Abdel-Khalek, H. Abu-Zinadah, “Analysis and Challenges of Robust E-Exams Performance under COVID-19.” Results in Physics, 2021, 103987.
[23] T. M. Clark, C. S. Callam, N. M. Paul, M. W. Stoltzfus and D. Turner, “Testing in the time of COVID-19: A sudden transition to unproctored online exams.” Journal of Chemical Education, 97 (9), 2020, pp. 3413-3417.
[24] A. Kraśniewski, ”O jakości kształcenia w czasach COVID-19: stare odpowiedzi na nowe pytania?” In: Nauczanie po pandemii. Nowe pytania czy nowe odpowiedzi na stare pytania? Warszawa: Instytut Problemów Współczesnej Cywilizacji im. Marka Dietricha LXXII, 2020, s. 39-50.
[25] C. Rapanta, L. Botturi, P. Goodyear, L. Guàrdia and M. Koole, “Online university teaching during and after the Covid-19 crisis: Refocusing teacher presence and learning activity.” Postdigital Science and Education, 2 (3), 2020, pp. 923-945.
[26] G. Penkowska, “Polski e-learning w opiniach ekspertów (cz. II).” E-mentor, 4 (21), 2007, pp. 39-38.
[27] A. Elzainy, A. El Sadik and W. Al Abdulmonem, ”Experience of e-learning and online assessment during the COVID-19 pandemic at the College of Medicine, Qassim University.” Journal of Taibah University Medical Sciences, 15 (6), 2020, pp. 456-462.
Go to article

Authors and Affiliations

Miłosz Wawrzyniec Romaniuk
1
Joanna Łukasiewicz-Wieleba
1

  1. The Maria Grzegorzewska University, Warsaw, Poland

This page uses 'cookies'. Learn more