Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The study presents the results of the investigations of the effect of Cu, Ni, Cr, V, Mo and W alloy additions on the microstructure and

mechanical properties of the AlSi7Mg0.3 alloy. The examinations were performed within a project the aim of which is to elaborate an

experimental and industrial technology of producing elements of machines and devices complex in their construction, made of aluminium

alloys by the method of precision investment casting. It was demonstrated that a proper combination of alloy additions causes the

crystallization of complex intermetallic phases in the silumin, shortens the SDAS and improves the strength properties: Rm, Rp0.2,HB

hardness. Elevating these properties reduces At, which, in consequence, lowers the quality index Q of the alloy of the obtained casts.

Experimental casts were made in ceramic moulds preliminarily heated to 160 °C, into which the AlSi7Mg0.3 alloy with the additions was

cast, followed by its cooling at ambient temperature. With the purpose of increasing the value of the quality index Q, it is recommended

that the process of alloy cooling in the ceramic mould be intensified and/or a thermal treatment of the casts be performed (ageing)(T6).

Go to article

Authors and Affiliations

T. Szymczak
T. Pacyniak
B.P. Pisarek
C. Rapiejko
Download PDF Download RIS Download Bibtex

Abstract

In this study, the effects of grain size refiner addition and various pre-heating mold temperatures on AlSi9 cast alloy microstructure and solidification have been evaluated. For different process conditions, thermal analysis was performed for all samples and cooling curves were established. Important parameters in liquidus and eutectic Si-phase regions have been calculated using the first derivative cooling curves. Secondary Dendrite Arm Spacing (SDAS) variation was also determined. Experimental results question the effectiveness of cooling curve parameters in providing the microstructure data as a function of refinement. The present work shows that the effect of grain refiner addition on the value of SDAS was higher when the solidification time was lower. It indicated that the solidification parameters such as nucleation temperatures of α-Al phase, undercooling temperature and total solidification time were affected by grain refinement. It has been found that the addition of grain refiner affect the eutectic phase formation time. However, it has no effect on the eutectic phase morphology.

Go to article

Authors and Affiliations

Badiâ Ait El Haj
Aboubakr Bouayad
Mohammed Alami
Download PDF Download RIS Download Bibtex

Abstract

In the present investigation, the influence of addition of the rare earth element samarium (Sm) in different concentrations (0, 0.1, 0.3, 0.5, 0.7 and 0.9wt.%) on the microstructure and tensile properties of the Al-Si-Cu 319 alloy have been evaluated. Microstructural constituents such as SDAS of α-Al and characteristics of eutectic silicon particles were observed by optical microscopy. It was concluded from the findings that Sm addition reduces the size of secondary dendrite arm spacings (SDAS) and altered the morphology of the eutectic silicon particles from needle-like to lamellar and smaller segments. The tensile properties of the Al-Si-Cu 319 alloy improved with the concentration of Sm. It was found that the highest tensile properties were obtained at 0.7wt.% addition of Sm, i.e., 55.5% higher than unmodified 319 alloy. With the further addition of the Sm above 0.7wt.%, it does not improve the tensile properties of the alloy. This can be attributed to the precipitation of the brittle and needle like quaternary Sm-rich intermetallic compounds observed through Scanning electron microscopy.
Go to article

Bibliography

[1] ASM Handbook Committee. (1990). Properties and selection: nonferrous alloys and special-purpose materials (pp. 597-599). ASM International.
[2] Hernandez, F.C.R., Ramírez, J.M.H., Mackay, R. (2017). Al-Si alloys: automotive, aeronautical, and aerospace applications. Springer International Publishing. Retrieved 30 April 2022 from Springer link http://link.springer.com/10.1007/978-3-319-58380-8.
[3] Alkahtani, S. (2012). Mechanical performance of heat treated 319 alloys as a function of alloying and aging parameters. Materials & Design. 41, 358-369. https://doi.org/10.1016/j.matdes.2012.04.034.
[4] Javidani, M. & Larouche, D. (2014). Application of cast Al–Si alloys in internal combustion engine components. International Materials Reviews. 59(3), 132-158. https://doi.org/10.1179/1743280413Y.0000000027.
[5] Lombardi, A., Ravindran, C. & MacKay, R. (2015). Optimization of the solution heat treatment process to improve mechanical properties of 319 Al alloy engine blocks using the billet casting method. Materials Science and Engineering: A, 633, 125-135. https://doi.org/10.1016/j.msea.2015.02.076.
[6] Hegde, S. & Prabhu, K.N. (2008). Modification of eutectic silicon in Al–Si alloys. Journal of materials science. 43(9), 3009-3027. https://doi.org/10.1007/s10853-008-2505-5.
[7] Sigworth, G.K. (2008). The modification of Al-Si casting alloys: important practical and theoretical aspects. International Journal of Metalcasting. 2(2), 19-40. https://doi.org/10.1007/BF03355425.
[8] Mahmoud, M.G., Zedan, Y., Samuel, A.M., Doty, H.W., Songmene, V. & Samuel, F.H. (2021). Effect of rare earth metals (Ce and La) addition on the performance of Al-Si-Cu-Mg Cast Alloys. International Journal of Metalcasting. 1-27. https://doi.org/10.1007/s40962-021-00669-6.
[9] Mahmoud, M.G., Zedan, Y., Samuel, A.M., Songmene, V. & Samuel, F.H. (2022). The use of rare earth metals in Al–Si–Cu casting alloys. International Journal of Metalcasting. 16(2), 535-552. https://doi.org/10.1007/s40962-021-00640-5.
[10] Patel, D.N. & Sutaria, M.P. (2022). Effect of Trace Rare Earth Er Addition on Microstructure and Tensile Properties of 319 Al-Si-Cu Alloy. International Journal of Metalcasting. 16, 2199–2209. https://doi.org/10.1007/s40962-021-00730-4.
[11] Xu, C., Xiao, W., Hanada, S., Yamagata, H. & Ma, C. (2015). The effect of scandium addition on microstructure and mechanical properties of Al–Si–Mg alloy: A multi-refinement modifier. Materials Characterization. 110, 160-169. https://doi.org/10.1016/j.matchar.2015.10.030.
[12] Mao, F., Yan, G., Xuan, Z., Cao, Z. & Wang, T. (2015). Effect of Eu addition on the microstructures and mechanical properties of A356 aluminum alloys. Journal of Alloys and Compounds. 650, 896-906. https://doi.org/10.1016/j.jallcom.2015.06.266.
[13] Nie, Z.R., Jin, T., Fu, J., Xu, G., Yang, J., Zhou, J.X. & Zuo, T.Y. (2002). Research on rare earth in aluminum. Materials Science Forum. 396-402, 1731-1740. https://doi.org/10.4028/www.scientific.net/MSF.396-402.1731.
[14] Nie, Z. R., Fu, J.B., Zou, J.X., Jin, T.N., Yang, J.J., Xu, G. F., Ruan, H. Q. & Zuo, T.Y. (2004). Advanced aluminum alloys containing rare-earth erbium. Materials forum. 28, 197-201.
[15] Hu, Z., Yan, H. & Rao, Y.S. (2013). Effects of samarium addition on microstructure and mechanical properties of as-cast Al-Si-Cu alloy. Transactions of Nonferrous Metals Society of China. 23(11), 3228-3234. https://doi.org/10.1016/S1003-6326(13)62857-5.
[16] Qiu, H., Yan, H. & Hu, Z. (2014). Modification of near-eutectic Al–Si alloys with rare earth element samarium. Journal of Materials Research. 29, 1270-1277. https://doi.org/10.1557/jmr.2014.113.
[17] Qiu, H., Yan, H., & Hu, Z. (2013). Effect of samarium (Sm) addition on the microstructures and mechanical properties of Al–7Si–0.7 Mg alloys. Journal of Alloys and Compounds. 567, 77-81. https://doi.org/10.1016/j.jallcom.2013.03.050.
[18] Rao, Y., Yan, H., & Hu, Z.(2013). Modification of eutectic silicon and β-Al5FeSi phases in as-cast ADC12 alloys by using samarium addition. Journal of Rare Earths. 31(9), 916-922. https://doi.org/10.1016/S1002-0721(12)60379-2.
[19] Li, Q., Li, J., Li, B., Lan, Y. & Xia, T. (2018). Effect of samarium (Sm) addition on the microstructure and tensile properties of Al–20% Si casting alloy. International Journal of Metalcasting. 12, 554-564. https://doi.org/10.1007/s40962-017-0193-0.
[20] Ibrahim, M.F., Abdelaziz, M.H., Samuel, A.M., Doty, H. W. & Samuel, F.H. (2020). Effect of rare earth metals on the mechanical properties and fractography of Al–Si-based alloys. International Journal of Metalcasting. 14, 108-124. https://doi.org/10.1007/s40962-019-00336-x.
[21] Mahmoud, M.G., Samuel, A.M., Doty, H.W. & Samuel, F.H. (2020). Effect of the addition of La and Ce on the solidification behavior of Al–Cu and Al–Si–Cu cast alloys. International Journal of Metalcasting. 14, 191-206. https://doi.org/10.1007/s40962-019-00351-y.
[22] Pandee, P., Patakham, U. & Limmaneevichitr, C. (2017). Microstructural evolution and mechanical properties of Al-7Si-0.3 Mg alloys with erbium additions. Journal of Alloys and Compounds. 728, 844-853. https://doi.org/10.1016/j.jallcom.2017.09.054.
[23] Sigworth, G.K. & Kuhn, T.A. (2007). Grain refinement of aluminum casting alloys. International Journal of Metalcasting. 1, 31-40. https://doi.org/10.1007/BF03355416.
[24] Basak, S., Biswas, P., Patra, S., Roy, H. & Mondal, M.K., (2021). Effect of TiB2 and Al3Ti on the microstructure, mechanical properties and fracture behaviour of near eutectic Al-12.6 Si alloy. International Journal of Minerals, Metallurgy and Materials. 28(7), 1174-1185. https://doi.org/10.1007/s12613-020-2070-8.
[25] Liu, Y.X., Wang, R.C., Peng, C.Q., Cai, Z.Y., Zhou, Z.H., Li, X.G. & Cao, X.Y. (2021). Microstructures and mechanical properties of in-situ TiB2/Al− xSi− 0.3 Mg composites. Transactions of Nonferrous Metals Society of China. 31(2), 331-344. https://doi.org/10.1016/S1003-6326(21)65499-7.
[26] Li, Z., Hu, Z. & Yan, H. (2016). Effect of samarium (Sm) addition on microstructure and mechanical properties of Al-5Cu alloys. Journal of Wuhan University of Technology-Materials Science Ed. 31(3), 624-629. https://doi.org/10.1007/s11595-016-1420-x.
[27] Ferdian, D., Pratama, J. R. & Pratesa, Y. (2019). Effect of samarium on microstructure and intermetallic formation in Al-5Zn-0.5 Si alloy. IOP Conference Series: Materials Science and Engineering. 541(1), 012024. DOI: 10.1088/1757-899X/541/1/012024.
[28] Lu, S.Z., & Hellawell, A. (1987). The mechanism of silicon modification in aluminum-silicon alloys: Impurity induced twinning. Metallurgical transactions A. 18(10), 1721-1733. https://doi.org/10.1007/BF02646204.
[29] Hume-Rothery, W., Smallman, R.E., Haworth, C.W. (1969). Structure of Metals and Alloys. London: Institute of Metals and the Institution of Metallurgists.

Go to article

Authors and Affiliations

D.N. Patel
1
M.P. Sutaria
1
ORCID: ORCID

  1. Department of Mechanical Engineering, Chandubhai S. Patel Institute of Technology, Charotar University of Science and Technology (CHARUSAT), Changa, Anand-388421, Gujarat, India
Download PDF Download RIS Download Bibtex

Abstract

Comprehensive understanding of the melt quality is of vital importance for foundry man. The effect of each particular element need to be properly analysed. Therefore, the aim of this paper was to analyse the impact of various content of zirconium on the solidification path and structural characteristics (SDAS, grain size, porosity) of as cast commercial AlSi10MgCu alloys. It has been found that addition of zirconium up to 0.24 wt.% reduce significantly the grains size (from 3.5 mm to 1.2 mm), SDAS (from 57.3 µm to 50.4 µm) and porosity (from 19% to 5%), leading to production of sound cast parts.

Go to article

Authors and Affiliations

P. Hajduch
M.B. Djurdjevic
D. Bolibruchová
ORCID: ORCID
Z. Simicevic
Download PDF Download RIS Download Bibtex

Abstract

One of the most important factors directly affecting microstructure and mechanical properties in directional solidification process is secondary dendrite arm spacing (SDAS). It is very important to measure the SDAS and examine the factors that may affect them. To investigate the effect of growth rate on the SDAS, the alloy specimens were directional solidified upward with different growth rates ( V = 8.3-83.0 μm/s) at a constant temperature gradient ( G = 4 K/mm) in a Bridgman-type growth apparatus. After the specimens are directionally solidified, they were exposed to metallographic processes in order to observe the dendritic solidification structure on the longitudinal section of the specimens. Coarsen secondary dendrite arm spacings (λ 2C) were measured excluding the first arms near the tip of the dendrite. Local solidification times ( tf) were calculated by ratio of spacings to growth rates. It was determined that the tf values decreased with increasing V values. The relationships between tf and λ 2C were defined by means of the binary regression analysis. Exponent values of tf were obtained as 0.37, 0.43, 0.46 and 0.47 according to increasing V values, respectively. These exponent values are close to the exponent value (0.33) predicted by the Rappaz-Boettinger theoretical model and good agreement with the exponent values (0.33-0.50) obtained by other experimental studies.
Go to article

Authors and Affiliations

Erkan Üstün
1
ORCID: ORCID
Emin Çadirli
1
ORCID: ORCID

  1. Niğde Ömer Halisdemir University, Institute of Science, Department of Physics, Niğde, Turkey

This page uses 'cookies'. Learn more