Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 7
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Vanadium carbide is important for industrial applications because of its high hardness, high temperature resistance, high chemical, and thermal stability. It is generally obtained from the reaction between V and C powders at a high temperature ranging from 1100 to 1500°C. Investigations on these high strength, high abrasion resistant, hard materials have been intensified in recent years and consequently, significant improvements have been achieved. In this study, VC alloys are produced with low cost processes, by reducing the oxides of their components by SHS methods and ball mill-assisted carbothermal reduction. In the experimental stage, V2O5 was used as oxidized Vanadium source, Cblack as carbon source, magnesium and Cblack as reductant. In the study, VC powders were synthesized by two different methods and optimum production conditions were determined. Furthermore, the effect of different stoichiometric charge components and the effect of experiment durations were realized by X-ray diffraction, HSC Chemistry, and SEM analyses for different reductants.
Go to article

Authors and Affiliations

Mehmet Bugdayci
1
Levent Once
2
Murat Alkan
Ahmet Turan
3
Umay Cinarli
4

  1. Yalova University, Faculty of Engineering, Chemical Engineering Department, 77200, Yalova, Turkey; Istanbul Medipol University, Vocational School, Construction Technology Department, 34810, Istanbul, Turkey
  2. Sinop University, Faculty of Engineering and Architecture, Metallurgical and Materials Engineering Department, 57000, Sinop, Turkey
  3. Dokuz Eylul University, Engineering Faculty, Department of Metallurgical and Materials Engineering, 35390, Izmir, Turkey
  4. Yeditepe University, Engineering Faculty, Materials Science and Nanotechnology Engineering Department, 34755, Istanbul, Turkey
Download PDF Download RIS Download Bibtex

Abstract

A method for manufacturing of Al-Si alloy (EN AC-44200) matrix composite materials reinforced with MAX type phases in Ti-Al-C systems was developed. The MAX phases were synthesized using the Self-propagating High-Temperature Synthesis (SHS) method in its microwave assisted mode to allow Ti2AlC and Ti3AlC2 to be created in the form of spatial structures with open porosity. Obtained structures were subjected to the squeeze casting infiltration in order to create a composite material. Microstructures of the produced materials were observed by the means of optical and SEM microscopies. The applied infiltration process allows forming of homogeneous materials with a negligible residual porosity. The obtained composite materials possess no visible defects or discontinuities in the structure, which could fundamentally deteriorate their performance and mechanical properties. The produced composites, together with the reference sample of a sole matrix material, were subjected to mechanical properties tests: nanohardness or hardness (HV) and instrumental modulus of longitudinal elasticity (EIT).
Go to article

Authors and Affiliations

A. Dmitruk
K. Naplocha
Download PDF Download RIS Download Bibtex

Abstract

NiTi alloys are successfully used in engineering and medical applications because of their properties, such as shape memory effect, superelasticity or mechanical strength. A composite with Mg matrix, due to its vibration damping properties, can be characterized by low weight and good vibration damping properties. In this study, a combination of two techniques was used for successful fabrication of Mg composite reinforced by NiTi alloy preform. The porous preforms synthesized by Self-propagating High-temperature Synthesis (SHS) from elemental powders were subsequently infiltrated with Mg by squeeze casting. The effects were examined with scanning electron microscope with EDS detector, X-ray diffraction and microindentation. The inspection has shown well-connected matrix and reinforcement; no reaction at the interface and open porosities fully infiltrated by liquid Mg. Moreover, analysis of samples’ fracture has exhibited that crack propagates inside the Mg matrix and there is no detachment of reinforcement.

Go to article

Authors and Affiliations

A. Kucharczyk
K. Naplocha
M. Tomanik
Download PDF Download RIS Download Bibtex

Abstract

Two methods were evaluated in terms of manufacturing of MAX phase preforms characterized with open porosity: microwave-assisted self-propagating high-temperature synthesis (SHS) and spark plasma sintering (SPS). The main purpose of fabrication of such open-porous preforms is that they can be successfully applied as a reinforcement in metal matrix composite (MMC) materials. In order to simulate the most similar conditions to microwave-assisted SHS, the sintering time of SPS was significantly reduced and the pressure was maintained at a minimum value. The chosen approach allows these two methods to be compared in terms of structure homogeneity, complete reactive charge conversion and energy effectivity. Study was performed in Ti-Al-C system, in which the samples were compacted from elemental powders of Ti, Al, C in molar ratio of 2:1:1. Manufactured materials after syntheses were subjected to SEM, XRD and STEM analyses in order to investigate their microstructures and chemical compositions. As was concluded, only microwave-assisted SHS synthesis allows the creation of MAX phases in the studied system. SPS technique led only to the formation of intermetallic secondary phases. The fabrication of MAX phases’ foams by microwave-assisted SHS presents some interesting advantages compared to conventional manufacturing methods. This work presents the characterization of foams obtained by microwave-assisted SHS comparing the results with materials produced by SPS. The analysis of SPS products for different sintering temperatures provided the better insight into the synthesis of MAX phases, supporting the established mechanism. Dissimilarities in the heating mechanisms that lead to the differing synthesis products were also discussed.

Go to article

Authors and Affiliations

A. Dmitruk
ORCID: ORCID
M. Lagos
K. Naplocha
ORCID: ORCID
P. Egizabal
Download PDF Download RIS Download Bibtex

Abstract

Microwave Assisted Self-propagating High-temperature Synthesis (MASHS) was used to prepare open-porous MAX phase preforms in Ti-Al-C and Ti-Si-C systems, which were further used as reinforcements for Al-Si matrix composite materials. The pretreatment of substrates was investigated to obtain open-porous cellular structures. Squeeze casting infiltration was chosen to be implemented as a method of composites manufacturing. Process parameters were adjusted in order to avoid oxidation during infiltration and to ensure the proper filling. Obtained materials were reproducible, well saturated and dense, without significant residual porosity or undesired interactions between the constituents. Based on this and the previous work of the authors, the reinforcement effect was characterized and compared for both systems. For the Al-Si+Ti-Al-C composite, an approx. 4-fold increase in hardness and instrumental Young's modulus was observed in relation to the matrix material. Compared to the matrix, Al-Si+Ti-Si-C composite improved more than 5-fold in hardness and almost 6-fold in Young's modulus. Wear resistance (established for different loads: 0.1, 0.2 and 0.5 MPa) for Al-Si+Ti-Al-C was two times higher than for the sole matrix, while for Al-Si+Ti-Si-C the improvement was up to 32%. Both composite materials exhibited approximately two times lower thermal expansion coefficients than the matrix, resulting in enhanced dimensional stability.
Go to article

Bibliography

[1] Gonzalez-Julian, J. (2021). Processing of MAX phases: From synthesis to applications. Journal of the American Ceramic Society. 104, 659-690. https://doi.org/10.1111/jace.17544.
[2] Barsoum, M.W. (2013). MAX Phases: Properties of Machinable Ternary Carbides and Nitrides. Wiley-VCH.
[3] Arróyave, R., Talapatra, A., Duong, T., Son, W., Gao, H. & Radovic M. (2017). Does aluminum play well with others? Intrinsic Al-A alloying behavior in 211/312 MAX phases. Materials Research Letters. 5(3), 170-178. https://doi.org/10.1080/21663831.2016.1241319.
[4] Khoptiar, Y. & Gotman, I. (2002). Ti2AlC ternary carbide synthesized by thermal explosion, Materials Letters. 57(1), 72-76. https://doi.org/10.1016/S0167-577X(02)00701-2.
[5] Jeitschko, W. & Nowotny, H. (1967). Die kristallstruktur von Ti3SiC2-ein neuer komplexcarbid-typ. Monatshefte Für Chemie. 98, 329-337. https://doi.org/10.1007/BF00899949.
[6] El Saeed, M.A., Deorsola, F.A. & Rashad, R.M. (2013). Influence of SPS parameters on the density and mechanical properties of sintered Ti3SiC2 powders. International Journal of Refractory Metals and Hard Materials. 41, 48-53. https://doi.org/10.1016/j.ijrmhm.2013.01.016.
[7] Radhakrishnan, R., Williams, J.J. & Akinc M. (1999). Synthesis and high-temperature stability of Ti3SiC2. Journal of Alloys and Compounds. 285(1-2), 85-88. https://doi.org/10.1016/S0925-8388(99)00003-1.
[8] Wang, Y., Huang, Z., Hu, W., Cai, L., Lei, C., Yu, Q. & Jiao Y. (2021). Preparation and characteristics of Ti3AlC2-Al3Ti/Al composite materials synthesized from pure Al and Ti3AlC2 powders. Materials Characterization. 178, 111298. https://doi.org/10.1016/j.matchar.2021.111298.
[9] Wang, Z., Ma, Y., Sun, K., Zhang, Q., Zhou, C., Shao, P., Xiu, Z. & Wu, G. (2022). Enhanced ductility of Ti3AlC2 particles reinforced pure aluminum composites by interface control. Materials Science and Engineering: A. 832, 142393. https://doi.org/10.1016/j.msea.2021.142393.
[10] Zhai, W., Pu, B., Sun, L., Xu, L., Wang, Y., He, L., Dong, H., Gao, Y., Han, M. & Xue, Y. (2022). Influence of Ti3AlC2 content and load on the tribological behaviors of Ti3AlC2p/Al composites. Ceramics International. 48(2), 1745-1756. https://doi.org/10.1016/j.ceramint.2021.09.254.
[11] Anasori, B., Caspi, E.N. & Barsoum, M.W. (2014). Fabrication and mechanical properties of pressureless melt infiltrated magnesium alloy composites reinforced with TiC and Ti2AlC particles. Materials Science and Engineering: A. 618, 511-522. https://doi.org/10.1016/j.msea.2014.09.039.
[12] Anasori, B. & Barsoum, M.W. (2016). Energy damping in magnesium alloy composites reinforced with TiC or Ti2AlC particles. Materials Science and Engineering: A. 653, 53-62. https://doi.org/10.1016/j.msea.2015.11.070.
[13] Hu, L., Kothalkar, A., O’Neil, M., Karaman, I. & Radovic, M. (2014). Current-activated, pressure-assisted infiltration: A novel, versatile route for producing interpenetrating ceramic-metal composites. Materials Research Letters. 2, 124-130. https://doi.org/10.1080/21663831.2013.873498.
[14] Song, I.H., Kim, D.K., Hahn, Y.D. & Kim, H.D. (2004). Investigation of Ti3AlC2 in the in situ TiC-Al composite prepared by the exothermic reaction process in liquid aluminum. Materials Letters. 58(5), 593-597. https://doi.org/10.1016/S0167-577X(03)00576-7.
[15] Wang, W.J., Gauthier-Brunet, V., Bei, G.P., Laplanche, G., Bonneville, J., Joulain, A. & Dubois, S. (2011). Powder metallurgy processing and compressive properties of Ti3AlC2/Al composites. Materials Science and Engineering: A. 530, 168-173. https://doi.org/10.1016/j.msea.2011.09.068.
[16] Chen, Y.L., Yan, M., Sun, Y.M., Mei, B.C. & Zhu, J.Q. (2009). The phase transformation and microstructure of TiAl/Ti2AlC composites caused by hot pressing. Ceramics International. 35(5), 1807-1812. https://doi.org/10.1016/j.ceramint.2008.10.009.
[17] Fedotov. A.F., Amosov. A.P., Latukhin. E.I. & Novikov. V.A. (2016). Fabrication of aluminum–ceramic skeleton composites based on the Ti2AlC MAX phase by SHS compaction. Russian Journal of Non-Ferrous Metals. 57(5), 33-40. https://doi.org/10.3103/S1067821216010053.
[18] Dang, W., Ren, S., Zhou, J., Yu, Y., Li, Z. & Wang, L. (2016). Influence of Cu on the mechanical and tribological properties of Ti3SiC2. Ceramics International. 42(8), 9972-9980. https://doi.org/10.1016/j.ceramint.2016.03.099.
[19] Shi, X., Wang, M., Xu, Z., Zhai, W. & Zhang, Q. (2013). Tribological behavior of Ti3SiC2/(WC-10Co) composites prepared by spark plasma sintering. Materials & Design. 45, 365-376. https://doi.org/10.1016/j.matdes.2012.08.069.
[20] Dang, W., Ren, S., Zhou, J., Yu, Y. & Wang, L. (2016). The tribological properties of Ti3SiC2/Cu/Al/SiC composite at elevated temperatures. Tribology International. 104, 294-302. https://doi.org/10.1016/j.triboint.2016.09.008.
[21] Krinitcyn, M., Fu, Z., Harris, J., Kostikov, K., Pribytkov, G.A., Greil, P. & Travitzky, N. (2017). Laminated object manufacturing of in-situ synthesized MAX-phase composites. Ceramics International. 43(12), 9241-9245. https://doi.org/10.1016/j.ceramint.2017.04.079.
[22] Li, H., Peng, L.M., Gong, M., He, L.H., Zhao, J.H. & Zhang, Y.F. (2005). Processing and microstructure of Ti3SiC2 / M (M = Ni or Co) composites. Materials Letters. 59(21), 2647-2649. https://doi.org/10.1016/j.matlet.2005.04.010.
[23] Sun, Z., Zhou, M.C. & Li, S. (2002). Tribological behavior of Ti3SiC2 based materials. Journal of Materials Science & Technology. 18(2), 142-145.
[24] Hu, C., Zhou, Y., Bao, Y. & Wan, D. (2006). Tribological properties of polycrystalline Ti3SiC2 and Al2O3-reinforced Ti3SiC2 composites. Journal of the American Ceramic Society. 89(11), 3456-3461. https://doi.org/10.1111/j.1551-2916.2006.01253.x.
[25] Yang, J., Gu, W., Pan, L.M., Song, K., Chen, X. & Qiu, T. (2011). Friction and wear properties of in situ (TiB2+TiC)/Ti3SiC2 composites. Wear. 271(11-12), 2940-2946. https://doi.org/10.1016/j.wear.2011.06.017.
[26] Lis, J., Chlubny, L., Łopaciński, M., Stobierski, L. & Bućko, M.M. (2008). Ceramic nanolaminates-Processing and application. Journal of the European Ceramic Society. 28(5), 1009-1014. https://doi.org/10.1016/j.jeurceramsoc.2007.09.033.
[27] Naplocha, K. (2013). Composite materials strengthened with preforms produced in the process of high-temperature synthesis in a microwave field (in Polish: Materiały kompozytowe umacniane preformami wytworzonymi w procesie wysokotemperaturowej syntezy w polu mikrofalowym). Wroclaw: Oficyna Wydawnicza PWr.
[28] Merzhanov, G. (2011). Thermally coupled SHS reactions. International Journal of Self-Propagating High-Temperature Synthesis. 20, 61-63. https://doi.org/10.3103/ S1061386211010109.
[29] Dmitruk, A., Żak, A., Naplocha, K., Dudziński, W. & Morgiel, J. (2018). Development of pore-free Ti-Al-C MAX/Al-Si MMC composite materials manufactured by squeeze casting infiltration. Materials Characterization. 146, 182-188. https://doi.org/10.1016/j.matchar.2018.10.005.
[30] Dmitruk, A., Naplocha, K., Żak, A., Strojny-Nędza, A., Dieringa, H. & Kainer K.U. (2019). Development of pore-free Ti-Si-C MAX/Al-Si composite materials manufactured by squeeze casting infiltration. Journal of Materials Engineering and Performance. 28, 6248-6257. https://doi.org/10.1007/s11665-019-04390-8.
[31] Dmitruk, A., Naplocha, K. & Strojny-Nędza, A. (2018). Thermal properties of Al alloy matrix composites reinforced with MAX type phases. Composites Theory and Practice. 18(1), 32-36. [32] Dmitruk, A. & Naplocha, K. (2018). Manufacturing of Al alloy matrix composite materials reinforced with MAX phases. Archives of Foundry Engineering. 18(2), 198-202. DOI: 10.24425/122528.
[33] Chen X. & Bei G. (2017). Toughening mechanisms in nanolayered MAX phase ceramics-a review. Materials (Basel). 10(4), 1-12. https://doi.org/10.3390/ma10040366.
[34] Yang, J., Liao, C., Wang, J., Jiang, Y. & He, Y. (2014). Effects of the Al content on pore structures of porous Ti3 AlC2 ceramics by reactive synthesis. Ceramics International. 40(3), 4643-4648. https://doi.org/10.1016/ j.ceramint.2013.09.004.
[35] Hashimoto, S., Nishina, N., Hirao, K., Zhou, Y., Hyuga, H., Honda, S. & Iwamoto, Y. (2012). Formation mechanism of Ti2AlC under the self-progating high-temperature synthesis (SHS) mode. Materials Research Bulletin. 47(5), 1162-1168. https://doi.org/10.1016/j.materresbull.2012.02.003.
[36] Yang. J., Liao. C., Wang. J., Jiang. Y. & He. Y. (2014). Reactive synthesis for porous Ti3AlC2 ceramics through TiH2, Al and graphite powders. Ceramics International. 40(5), 6739-6745. https://doi.org/10.1016/ j.ceramint.2013.11.136.
[37] Hendaoui, A., Vrel, D., Amara, A., Langlois, P., Andasmas, M. & Guerioune, M. (2010). Synthesis of high-purity polycrystalline MAX phases in Ti-Al-C system through mechanically activated self-propagating high-temperature synthesis. Journal of the European Ceramic Society. 30(4), 1049-1057. https://doi.org/10.1016/j.jeurceramsoc.2009.10.001.
[38] Yeh, C.L. & Shen, Y.G. (2008). Effects of SiC addition on formation of Ti3SiC2 by self-propagating high-temperature synthesis. Journal of Alloys and Compounds. 461(1-2), 654-660. https://doi.org/10.1016/j.jallcom.2007.07.088.
[39] Zhang, Y., Ding, G.P., Zhou, Y.C. & Cai, B.C. (2002). Ti3SiC2 - a selflubricating ceramic, Materials Letters. 55(5), 285-289. https://doi.org/10.1016/S0167-577X(02)00379-8.
[40] Radovic, M. & Barsoum, M.W. (2013). MAX phases: Bridging the gap between metals and ceramics. American Ceramic Society Bulletin. 92(3), 20-27.
[41] Barsoum, M.W., El-raghy, T., Rawn, C.J., Porter, W.D., Wang, H., Payzant, E.A. & Hubbard, C.R. (1999). Thermal properties of Ti3SiC2. Journal of Physics and Chemistry of Solids. 60(4), 429-439. https://doi.org/10.1016/S0022-3697(98)00313-8.
[42] Son, W., Duong, T., Talapatra, A., Gao, H., Arróyave, R. & Radovic, M. (2016). Ab-initio investigation of the finite-temperatures structural, elastic, and thermodynamic properties of Ti3AlC2 and Ti3SiC2. Computational Materials Science. 124, 420-427. https://doi.org/10.1016/j.commatsci.2016.08.015.
[43] Shih, C., Meisner, R., Porter, W., Katoh, Y. & Zinkle, S.J. (2013). Physical and thermal mechanical characterization of non-irradiated MAX phase materials (Ti-Si-C and Ti-Al-C systems). Fusion Reactor Materials Program. 55, 78-93.
[44] Wang, X.H. & Zhou, Y.C. (2010). Layered Machinable and electrically conductive Ti2AlC and Ti3AlC2 ceramics: a review. Journal of Materials Science & Technology. 26(5), 385-416. https://doi.org/10.1016/S1005-0302(10)60064-3.

Go to article

Authors and Affiliations

A. Dmitruk
1
ORCID: ORCID
K. Naplocha
1
ORCID: ORCID
A. Żak
2
A. Strojny-Nędza
3

  1. Wrocław University of Science and Technology, Faculty of Mechanical Engineering, Department of Lightweight Elements Engineering, Foundry and Automation, Poland
  2. Wrocław University of Science and Technology, Faculty of Chemistry, Institute of Advanced Materials, Poland
  3. Łukasiewicz Institute of Microelectronics and Photonics, Poland
Download PDF Download RIS Download Bibtex

Abstract

Doping is one of the possible ways to significantly increase the thermoelectric properties of many different materials. It has been confirmed that by introducing bismuth atoms into Mg sites in the Mg2Si compound, it is possible to increase career concentration and intensify the effect of phonon scattering, which results in remarkable enhancement in the figure of merit (ZT) value. Magnesium silicide has gained scientists’ attention due to its nontoxicity, low density, and inexpensiveness. This paper reports on our latest attempt to employ ultrafast selfpropagating high-temperature synthesis (SHS) followed by the spark plasma sintering (SPS) as a synthesis process of doped Mg2Si. Materials with varied bismuth doping were fabricated and then thoroughly analyzed with the laser flash method (LFA), X-ray diffraction (XRD), scanning electron microscopy (SEM) with an integrated energy-dispersive spectrometer (EDS). For density measurement, the Archimedes method was used. The electrical conductivity was measured using a standard four-probe method. The Seebeck coefficient was calculated from measured Seebeck voltage in the sample subjected to a temperature gradient. The structural analyses showed the Mg2Si phase as dominant and Bi2Mg3 located at grain boundaries. Bismuth doping enhanced ZT for every dopant concentration. ZT = 0:44 and ZT=0.38 were obtained for 3wt% and 2wt% at 770 K, respectively.
Go to article

Authors and Affiliations

Bartosz Bucholc
1
ORCID: ORCID
Kamil Kaszyca
1
ORCID: ORCID
Piotr Śpiewak
2
ORCID: ORCID
Krzysztof Mars
3
ORCID: ORCID
Mirosław J. Kruszewski
2
ORCID: ORCID
Łukasz Ciupiński
2
ORCID: ORCID
Krystian Kowiorski
1
ORCID: ORCID
Rafał Zybała
1 2
ORCID: ORCID

  1. Łukasiewicz Research Network - Institute of Microelectronics and Photonics, Aleja Lotników 32/46, 02-668 Warsaw, Poland
  2. Faculty of Materials Science and Engineering, Warsaw University of Technology, Wołoska 141, 02-507 Warsaw, Poland
  3. Faculty of Materials Science and Ceramic, AGH University of Science and Technology, Kraków, Al. Mickiewicza 30, 30-059, Poland

This page uses 'cookies'. Learn more