Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 9
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The integrated Singular Value Decomposition (SVD) and Unscented Kalman Filter (UKF) method can recursively estimate the attitude and attitude rates of a nanosatellite. At first, Wahba’s loss function is minimized using the SVD and the optimal attitude angles are determined on the basis of the magnetometer and Sun sensor measurements. Then, the UKF makes use of the SVD’s attitude estimates as measurement results and provides more accurate attitude information as well as the attitude rate estimates. The elements of “Rotation angle error covariance matrix” calculated for the SVD estimations are used in the UKF as the measurement noise covariance values. The algorithm is compared with the SVD and UKF only methods for estimating the attitude from vector measurements. Possible algorithm switching ideas are discussed especially for the eclipse period, when the Sun sensor measurements are not available.

Go to article

Authors and Affiliations

Demet Cilden
Halil Ersin Soken
Chingiz Hajiyev
Download PDF Download RIS Download Bibtex

Abstract

Green mine construction is the main melody of mining development and problems such as safe production, energy saving and consumption reduction need to be solved urgently. The working conditions of the mill are complex in the process of grinding. Aiming at the problems existing in the feature extraction and load prediction of the mill, a signal-processing method based on adaptive chirp mode decomposition (ACMD) and a standardized variable distance classifier (SVD) is proposed. Firstly, the recursive framework of the ACMD method is used to obtain the initial frequency of mill vibration signals. Secondly, the initial frequency is used to reconstruct the high-resolution component of the mill vibration signal through the iterative frame in the ACMD method. The frequency corresponding to the frequency domain peak of the reconstructed signal is then selected as the mill load feature vector. Finally, with consideration to the influence of standard deviation and standardized variable factors on the feature vectors, a standardized variable distance classifier is proposed. The feature vectors of the mill load are input into the SVD model for training, and the state types of the mill load are obtained. The method is applied to the grinding experiment and the results show that the frequency-domain features obtained by the mill vibration signal-processing method based on ACMD-SVD are obvious, which has high accuracy in the identification of mill load types, and provides a new idea for the extraction of mill load features and prediction of the mill load.
Go to article

Authors and Affiliations

Wencong Tang
1
Fangwei Zhang
1
Xiaoyan Luo
1
ORCID: ORCID
Junliang Wan
1
Tao Deng
1

  1. Jiangxi University of Science and Technology, China
Download PDF Download RIS Download Bibtex

Abstract

A robust and highly imperceptible audio watermarking technique is presented to secure the electronic patient record of Parkinson’s Disease (PD) affected patient. The proposed DCT-SVD based watermarking technique introduces minimal changes in speech such that the accuracy in classification of PD affected person’s speech and healthy person’s speech is retained. To achieve high imperceptibility the voiced part of the speech is considered for embedding the watermark. It is shown that the proposed watermarking technique is robust to common signal processing attacks. The practicability of the proposed technique is tested: by creating an android application to record & watermark the speech signal. The classification of PD affected speech is done using Support Vector Machine (SVM) classifier in cloud server.

Go to article

Authors and Affiliations

Aniruddha Kanhe
Aghila Gnanasekaran
Download PDF Download RIS Download Bibtex

Abstract

The studied problem in this paper, treat the issue of state and fault estimation using a fuzzy observer in the case of unmeasurable decision variable for Discrete-Time Takagi-Sugeno Singular Sytems (DTSSS). First, an augmented system is introduced to gather state and fault into a single vector, then on the basis of Singular Value Decomposition (SVD) approach, this observer is designed in explicit form to estimate both of state and fault of a nonlinear singular system. The exponential stability of this observer is studied using Lyapunov theory and the convergence conditions are solved with Linear Matrix Inequalities (LMIs). Finally a numerical example is simulated, and results are given to validate the offered approach.
Go to article

Authors and Affiliations

Khaoula Aitdaraou
1 2
Mohamed Essabre
3
Abdellatif El Assoudi
1 2
El Hassane El Yaagoubi
1 2

  1. Laboratory of High Energy Physics and Condensed Matter, Faculty of Science, Hassan II University of Casablanca, B.P 5366, Maarif Casablanca, Morocco
  2. ECPI, Department of Electrical Engineering, ENSEM Hassan II University of Casablanca, B.P 8118, Oasis Casablanca, Morocco
  3. Laboratory of Materials, Energy and Control Systems, Faculty of Sciences and Technologies Mohammedia, Hassan II University of Casablanca, Morocco
Download PDF Download RIS Download Bibtex

Abstract

Hybrid precoding techniques are lately involved a lot of interest for millimeter-wave (mmWave) massive MIMO systems is due to the cost and power consumption advantages they provide. However, existing hybrid precoding based on the singular value decomposition (SVD) necessitates a difficult bit allocation to fit the varying signal-to-noise ratios (SNRs) of altered sub-channels. In this paper, we propose a generalized triangular decomposition (GTD)-based hybrid precoding to avoid the complicated bit allocation. The development of analog and digital precoders is the reason for the high level of design complexity in analog precoder architecture, which is based on the OMP algorithm, is very non-convex, and so has a high level of complexity. As a result, we suggest using the GTD method to construct hybrid precoding for mmWave mMIMO systems. Simulated studies as various system configurations are used to examine the proposed design. In addition, the archived findings are compared to a hybrid precoding approach in the classic OMP algorithm. The proposed Matrix Decomposition’s simulation results of signal-to-noise ratio vs spectral efficiencies.
Go to article

Authors and Affiliations

Sammaiah Thurpati
1
P. Muthuchidambaranathan
1

  1. Department of Electronics and Communication Engineering, National Institute of Technology, Tiruchirappalli, India
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an innovative approach for the index assessment of the acoustic properties of churches. A new formula for an approximate single number index to assess selected acoustic parameters of church interiors, such as reverberation time (RT), speech intelligibility index (RASTI) and music clarity index (C80), is presented in the paper. The formula is created by means of the Singular Value Decomposition (SVD) method. An innovative approach for calculating the weights of partial indices is shown by solving the problem of redundant information, i.e., the system of overdetermined linear equations, using a computed pseudoinverse matrix. The new procedures for calculating the values of three partial indices and the single number index to assess selected acoustic parameters are presented. The proposed method was verified by measurements in several selected churches.

Go to article

Authors and Affiliations

Krzysztof Kosała
Download PDF Download RIS Download Bibtex

Abstract

A new approach to acoustic quality assessment of churches during simulation tests is proposed in the article. The numerical global index, based on four partial indices: reverberation, speech intelligibility, music sound index and a proposed new one - sound strength index, assesses the acoustic parameters of the model of the tested church in a complex manner.

The global single number index was obtained from 17 simulations of acoustic adaptation options of the investigated church's interior. The equation of the approximate global index has been obtained by means of singular vectors, obtained from Singular Value Decomposition (SVD) of the Index Observation Matrix of Simulation Variants (IOMSV). The weights of four partial indices and a universal equation of the global index have been calculated using the SVD technique to solve the problem of correlated acoustical parameters. The global index may be a helpful tool during simulation tests of acoustic quality assessment of churches. The proposed final equation of the global index does not require knowledge of the SVD technique and the values of acoustic parameters preferred for churches. Therefore the methodology proposed is easily applicable.

Go to article

Authors and Affiliations

Krzysztof Kosała
Download PDF Download RIS Download Bibtex

Abstract

In parallel with research conducted using conventional methods, a uniform index method for assessing the acoustic quality of Roman Catholic churches has been developed. The latest version of the index method has been created using the index observation matrix of 12 churches which have been rated by means of the single number global index.

Assessments of the acoustic quality of any Roman Catholic church, using two calculation models: the Global Acoustic Properties Index (GAP) and the Global Index (GI), are shown in the article. The verification was performed on the example of one church, showing the way of calculating global indices to assess the acoustic quality of a new facility. The next stages in the development of the index method for assessing the acoustic quality of churches were taking into account the audience, using simulation tests and determining the spatial distribution of the single number GAP index in an examined church. An attempt to use the GAP and GI calculation models to assess the acoustic properties of some churches is also shown in the article.

Go to article

Authors and Affiliations

Krzysztof Kosała

This page uses 'cookies'. Learn more