Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 3
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The paper deals with the issue of potential for improvement of resistance of wood chip fine grinders to abrasive wear by providing them with WCCoCr coating applied with the use of atmospheric plasma spraying (APS). The study focused on establishing parameters of the technological process of spraying a 250–270 μm thick coating onto surface of ductile cast iron castings used to date as grinder linings. The presented data include results of microstructure examination, chemical composition analysis, HV hardness measurements, and scratch tests for both previous and new variant of linings. The obtained scratch test results indicate that the material of the coating is characterized with definitely lower susceptibility to scratching. The scratch made on coating was 75–84 μm wide and 7.2–8.2 μm deep, while the scratch on cast iron was distinctly wider (200–220 μm) and deeper (8.5–12.8 μm). In case of cast iron, the range of variability in scratch width and depth was definitely larger. This can be explained with large difference in hardness of individual components of microstructure of cast iron and significantly larger plastic deformation of cast iron compared to the coating revealed in the course of indenter motion over surfaces of the two materials. It has been found that application of WCCoCr coating offered better resistance of lining surfaces to scratching which can be considered a rationale for undertaking in-service tests.

Go to article

Authors and Affiliations

A.W. Orłowicz
M. Mróz
M. Tupaj
B. Kupiec
M. Jacek
M. Radoń
Download PDF Download RIS Download Bibtex

Abstract

This paper presents the possibility of improving the scratch resistance of the AZ91 magnesium alloy by applying a WCCoCr coating using the Air Plasma Spraying (APS) method. The coating thickness ranged from 140 to 160 m. Microstructural studies of the AZ91 magnesium alloy were performed. The chemical composition of the WCCoCr powder was investigated. The quality of the bond at the substrate–coating interface was assessed and a microanalysis of the chemical composition of the coating was conducted. The scratch resistance of the AZ91 alloy and the WCCoCr coating was determined. The scratch resistance of the WCCoCr powder-based coating is much higher than the AZ91 alloy, as confirmed by scratch geometry measurements. The scratch width in the coating was almost three times smaller compared to the scratch in the substrate. Observations of the substrate–coating interface in the scratch area indicate no discontinuities. The absence of microcracks and delamination at the transition of the scratch from the substrate to the coating indicates good adhesion. On the basis of the study, it was found that there was great potential to use the WCCoCr powder coating to improve the abrasion resistance of castings made from the AZ91 alloy.
Go to article

Bibliography

[1] Wanhill, R.J.H. (2017). Carbon fibre polymer matrix structural composites. Aerospace Materials and Material Technologies. 1, 309-341. https://doi.org/10.1007/978-981-10-2134-3_14.
[2] Dziadoń, A. & Mola, R. (2013). Magnesium – directions of shaping mechanical properties. Obróbka plastyczna Metali. XXIV(4). (in Polish).
[3] Mordike, B.L. & Ebert, T. (2001). Magnesium: Properties – application – potential. Materials Science and Engineering. 302(1), 37-45. DOI: 10.1016/S0921-5093(00)01351-4.
[4] Wang, G.G. & Weiler, J.P. (2023). Recent developments in high pressure die-cast magnesium alloys for automotive and future applications. Journal of Magnesium and Alloys. 11(1), 78 87. DOI: doi.org/10.1016/j.jma.2022.10.001.
[5] Liu, B., Yang, J., Zhang, X., Yang, Q., Zhang, J., Li, X. (2022). Development and application of magnesium alloy parts for automotive OEMs: A review. Journal of Magnesium and Alloys. 11(1), 15-47. DOI: 10.1016/j.jma.2022.12.015.
[6] Janik, B. (2011). Application of magnesium alloys in aviation. Prace Instytutu Lotnictwa. 57(221), 102-108. (in Polish).
[7] Prasad, S.V.S., Prasad, S.B., Verma, K., Mishra, R.K., Kumar, V. & Singh, S. (2021). The role and significance of Magnesium in modern day research – A review. Journal of Magnesium and alloys. 10(1), 1-61. DOI: 10.1016/j.jma.2021.05.012.
[8] Blawert, C., Hort, N. & Kainer, K.U. (2004). Automotive applications of magnesium and its alloys. Transaction of the Indian Institute of Metals. 57(4), 397-408.
[9] Chen, H. & Alpas A.T. (2000). Sliding wear map for the magnesium alloy Mg-9Al-0.9Zn (AZ91). Wear. 246(1-2), 106-116. DOI: 10.1016/S0043-1648(00)00495-6.
[10] Walczak, M., Caban, J. & Pliżga, P. (2015). Tribological characteristic of magnesium alloys used in means of transport. TTS Technika Transportu Szynowego. 22(12), 1614-1617.
[11] Parco, M., Zhao, L., Zwick, J., Bobzin, K. & Lugscheider, E. (2007). Investigation of particle flattening behaviour and bonding mechanisms of APS sprayed coatings on magnesium alloys. Surface and Coating Technology. 201(14), 6290-6296. DOI: 10.1016/j.surfcoat.2006.11.034.
[12] Morelli, S., Rombol`a, G., Bolelli, G., Lopresti, M., Puddu, P, Boccaleri, E., Seralessandri, L., Palin, L., Testa, V., Milanesio, M. & Lusvarghi, L. (2022). Hard ultralight systems by thermal spray deposition of WC-CoCr onto AZ31 magnesium alloy. Surface and Coating Technology. 451, 129056 1-26. DOI.org/10.1016/j.surfcoat.2022.129056.
[13] Gray, J.E. & Luan, B. (2002). Protective coatings on magnesium and its alloys – a critical review. Journal of Allys and Compounds. 336(1-2), 88-113. DOI: 10.1016/S0925 8388(01)01899-0.
Go to article

Authors and Affiliations

Marek Mróz
1
ORCID: ORCID
Sylwia Olszewska
1
ORCID: ORCID
Patryk Rąb
1
ORCID: ORCID

  1. Rzeszow University of Technology, Poland
Download PDF Download RIS Download Bibtex

Abstract

This study investigated the effect of T6 heat treatment on the microstructure and scratch wear behavior of hypoeutectic ­Al-12wt.%Si alloy manufactured by extrusion. Microstructural observation identified spherical eutectic Si phases before and after the heat treatment of alloys (F, T6). Phase analysis confirmed Al matrix and Si phase as well as Al2Cu and Al3Ni, Mg2Si in both alloys. In particular, Al2Cu was finer and more evenly distributed in T6 alloy. This resulted in Vickers hardness of T6 alloy that was 2.3 times greater compared to F alloy. The scratch wear test was conducted using constant load scratch test (CLST) mode and multi-pass scratch test (MPST) mode. The scratch coefficient and worn out volume obtained by such were used to evaluate wear properties before and after heat treatment. In the case of T6 alloy, its scratch coefficient was lower than F alloy in all load ranges. After 15 repeated tests to measure worn out volume, F alloy and T6 alloy measured 1.2×10–1 mm3 and 7.8×10–2 mm3, respectively. In other words, the wear resistance of T6 alloy were confirmed to be better than those of F alloy. In addition, this study attempted to identify the microstructural factors that contribute to the better scratch wear resistance of T6 alloy and wear mechanism from surface and cross-section observations after the wear tests.

Go to article

Authors and Affiliations

Yeon-Ji Kang
Jong-Ho Kim
Jong-Il Hwang
Kee-Ahn Lee

This page uses 'cookies'. Learn more