Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 6
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an approach based on NURBS (non-uniform rational B-splines) to achieve a seismic response surface (SRS) from a group of points obtained by using an analytical model of RC joints. NURBS based on the genetic algorithm is an important mathematical tool and consists of generalizations of Bezier curves and surfaces and B-splines. Generally, the accuracy of the design process of joints depends on the number of control points that are captured in the results of experimental research on real specimens. The values obtained from the specimens are the best tools to use in seismic analysis, though more expensive when compared to values simulated by SRSs. The SRS proposed in this paper can be applied to obtain surfaces that show site effect results on destructions of beam-column joint, taking into account different site conditions for a specific earthquake. The efficiency of this approach is demonstrated by the retrieval of simulated-versus-analytical results.

Go to article

Authors and Affiliations

R. Tabatabaei Mirhosseini
Download PDF Download RIS Download Bibtex

Abstract

This paper investigates the influence of isolation systems on the seismic behavior of urban reinforce concrete bridge. The performance of the Hesarak Bridge constructed in Karaj city, Iran with two isolation systems; i.e. the existing elastomeric rubber bearing (ERB) and a proposed lead rubber bearing (LRB) is discussed. The numerical model was implemented in the well-known FEM software CSIBridge. The isolated bridge has been analyzed using nonlinear time history analysis method with seven pairs of earthquake records and the results are compared for the two isolation systems. The LRB isolators are shown to have superior seismic performance in comparison with the existing ERB systems based on the response evaluation including force on the isolator, pier base shear, deck acceleration, bending moment, pier displacement, and energy dissipation.

Go to article

Authors and Affiliations

Ali Akbar Edalati
Hossein Tahghighi
Download PDF Download RIS Download Bibtex

Abstract

In order to investigate the influence of vertical ground motion on seismic responses of story-isolation structures mounted on triple friction pendulum (TFP) bearings, the finite element model of a six-story building with various types of interlayer isolation TFP bearings under far field or near fault ground motions is established and analysed. A discrepancy rate function of peak interlayer shear, acceleration and displacement results is adopted to discuss the influence of the vertical seismic motions on isolation structural responses. Furthermore, the isolation form, the isolation period and the friction coefficient of bearings are changed to study their effect on the vertical seismic component’s influence. The results show that the influence of the vertical seismic component is considerable on the isolation layer especially under near-fault ground motions, so it should not be overlooked during the structural design; The change of isolation forms will greatly affect the influence of the vertical seismic component especially in the isolation layer and isolation systems with isolation devices set on higher stories or with less isolation layers will have less vertical seismic effect on story acceleration; The increase of the isolation period will globally result in the decrease of the influence of vertical seismic components, though in some cases it shows some sort of fluctuation before the final decrease; The increase of the friction coefficient will lead to the global decrease in the influence of the vertical seismic component in single-layer isolation structures, while it does not obviously affect those in the multi-layer isolation systems.
Go to article

Bibliography


[1] K. Ryan, C. Earl. “Analysis and Design of Inter-story Isolation Systems with Nonlinear Devices,” Journal of Earthquake Engineering 14(7): pp. 1044–1062, 2010. https://doi.org/10.1080/13632461003668020
[2] D.C.Charmpis, P.Komodromos, M.C.Phocas. “Optimized earthquake response of multi‐storey buildings with seismic isolation at various elevations,” Earthquake Engineering & Structural Dynamics 41(15): pp. 2289–2310, 2012. https://doi.org/10.1002/eqe.2187
[3] H. Fakhri, G.G. Amiri. “Nonlinear Response-History Analysis of Triple Friction Pendulum Bearings (TFPB), Installed Between Stories,” 15th World Conference on Earthquake Engineering, Lisbon, 2012.
[4] A. Reggio, M.D. Angelis. “Optimal energy‐based seismic design of non‐conventional Tuned Mass Damper (TMD) implemented via inter‐story isolation,” Earthquake Engineering & Structural Dynamics 44(10): pp. 1623–1642, 2015. https://doi.org/10.1002/eqe.2548
[5] M. Rabiei, F. Khoshnoudian. “Response of multistory friction pendulum base-isolated buildings including the vertical component of earthquakes,” Canadian Journal of Civil Engineering 38(10): pp. 1045–1059, 2011. https://doi.org/10.1139/l11-064
[6] K. Faramarz, R. Montazar. “Seismic Response of Double Concave Friction Pendulum Base-Isolated Structures Considering Vertical Component of Earthquake,” Advances in Structural Engineering 13(1): pp. 1–14, 2010. https://doi.org/10.1260/1369-4332.13.1.1
[7] V. Loghman, F. Khoshnoudian, M. Banazadeh. “Effect of vertical component of earthquake on seismic response of triple concave friction pendulum base-isolated structures,” Journal of Vibration & Control 21(11): pp. 2099–2113, 2013. https://doi.org/10.1177/1077546313503359
[8] D.M. Fenz, M.C. Constantinou. “Spherical sliding isolation bearings with adaptive behavior: Theory,” Earthquake Engineering and Structural Dynamics 37(2): pp. 163-183, 2008. https://doi.org/10.1002/eqe.751
[9] D.M. Fenz, M.C. Constantinou. “Spherical sliding isolation bearings with adaptive behavior: Experimental verification,” Earthquake Engineering & Structural Dynamics 37(2): pp. 185–205, 2010. https://doi.org/10.1002/eqe.750
[10] N.D. Dao. “Seismic Response of a Full-scale 5-story Steel Frame Building Isolated by Triple Pendulum Bearings under Three-Dimensional Excitations,” Dissertations & Theses - Gradworks, University of Nevada, 2012.
[11] T.C. Becker, S.A. Mahin. “Approximating peak responses in seismically isolated buildings using generalized modal analysis,” Earthquake Engineering & Structural Dynamics 42(12): pp. 1807–1825, 2014. https://doi.org/10.1002/eqe.2299
[12] J. Sheller, M.C. Constantinou. “Response history analysis of structures with seismic isolation and energy dissipation systems: verification examples for program SAP2000,” Report No. MCEER 99-02, Multidisciplinary Center for Earthquake Engineering Research, New York, 1999.
[13] W.I. Liao, C.H. Loh, S. Wan. “Earthquake responses of RC moment frames subjected to near-fault ground motions,” Structural Design of Tall & Special Buildings 10(3): pp. 219–229, 2001. https://doi.org/10.1002/tal.178
Go to article

Authors and Affiliations

Zhao Fang
1
Ping Yan
2

  1. Nanjing Institute of Technology, School of Architecture Engineering, Hongjing Avenue 1, 211167 Nanjing, China
  2. Jiangsu Provincial Architectural D&R Institute LTD, Chuangyi Road 86, 211167 Nanjing, China
Download PDF Download RIS Download Bibtex

Abstract

The stiffness of structural elements (columns, beams, and slabs) significantly contributes to the overall stiffness of reinforced concrete (RC) high-rise buildings (H.R.B.s) subjected to earthquake. In order to investigate what percentage each type of element contributes to the overall performance of an H.R.B. under seismic load, the stiffness of each type of element is reduced by 10% to 90%. A time history analysis by SAP2000 was performed on thirteen 3D models of 12-story RC buildings in order to illustrate the contribution of column stiffness and column cross sections (rectangular or square), building floor plans (square or rectangular), beam stiffness and slab stiffness, on building resistance to an earthquake. The stiffness of the columns contributed more than the beams and slabs to the earthquake resistance of H.R.B.s. Rectangular cross-section columns must be properly oriented in order for H.R.B.s and slender buildings to attain the maximum resistance against earthquakes.

Go to article

Authors and Affiliations

D.-P.N. Kontoni
A.A. Farghaly
Download PDF Download RIS Download Bibtex

Abstract

In this research, a series of centrifuge model tests and dynamic response analyses were conducted to elucidate the impact of a composite structure comprised of a reinforced earth-pressure-resistant technique, using both masonry blocks and the reinforced earth method, which was installed at the slope toe end of an aged reservoir. The purpose of the study was to evaluate the seismic response of the embankment. The experimental tests included shaking table tests that were performed on an unreinforced embankment as well as a masonry block reinforced embankment, both in a water storage condition. The dynamic behavior of the embankment, as well as the propagation of slip failure, were compared and verified. Through the use of elasto-plastic dynamic response analysis, using the finite element method, the location of the slip surface, the settlement of the embankment and the dynamic response characteristics, as obtained experimentally, were examined to clarify the effects of the counter measure structure. The results indicate that the implementation of masonry blocks and the reinforcement installed behind them greatly improve the stability of the slope of the embankment, suppress the shear failure of the upper part of the embankment, and effectively prevent overall deformation of the embankment.
Go to article

Authors and Affiliations

Bohan Wang
1
ORCID: ORCID
Yoshiyuki Mohri
2
ORCID: ORCID
Hidekazu Tagashira
3
ORCID: ORCID
Akira Izumi
4
ORCID: ORCID
Tadatsugu Tanaka
5
ORCID: ORCID

  1. Agr., Research & Development Institute, Takenaka Corporation, 5-1, 1-chome, Otsuka, Inzai-shi, Chiba, Japan
  2. Agr., Ibaraki University, 3-21-1, Amimachi chuou, Inashiki, Ibaraki, Japan
  3. Institute of Rural Engineering, 2-1-6 Kannondai, Tsukuba, Ibaraki, Japan
  4. Agr., Institute of Rural Engineering, 2-1-6 Kannondai, Tsukuba, Ibaraki, Japan
  5. Agr., University of Tokyo, 7-3-1, Hongo, Bunkyo,Tokyo, Japan
Download PDF Download RIS Download Bibtex

Abstract

The growth in high-rise building construction has increased the need for hybrid reinforced concrete and steel structural systems. Columns in buildings are the most important elements because of their seismic resistance. Reinforced concrete (RC) columns and steel columns were used herein to form hybrid structural systems combining their distinct advantages. Eleven 3D building models subjected to earthquake excitation with reinforced concrete beams and slabs of 12 floors in height and with different distributions of mixed columns were analyzed by the SAP2000 software in order to investigate the most suitable distributions of a combination of reinforced concrete and steel columns. Top displacements and accelerations, base normal forces, base shear forces, and base bending moments were computed to evaluate the selected hybrid structural systems. The findings are helpful in evaluating the efficiency of the examined hybrid high-rise buildings in resisting earthquakes.

Go to article

Authors and Affiliations

D.P.N. Kontoni
A.A. Farghaly

This page uses 'cookies'. Learn more