Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 46
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Although the emotions and learning based on emotional reaction are individual-specific, the main features are consistent among all people. Depending on the emotional states of the persons, various physical and physiological changes can be observed in pulse and breathing, blood flow velocity, hormonal balance, sound properties, face expression and hand movements. The diversity, size and grade of these changes are shaped by different emotional states. Acoustic analysis, which is an objective evaluation method, is used to determine the emotional state of people’s voice characteristics. In this study, the reflection of anxiety disorder in people’s voices was investigated through acoustic parameters. The study is a case-control study in cross-sectional quality. Voice recordings were obtained from healthy people and patients. With acoustic analysis, 122 acoustic parameters were obtained from these voice recordings. The relation of these parameters to anxious state was investigated statistically. According to the results obtained, 42 acoustic parameters are variable in the anxious state. In the anxious state, the subglottic pressure increases and the vocalization of the vowels decreases. The MFCC parameter, which changes in the anxious state, indicates that people can perceive this situation while listening to the speech. It has also been shown that text reading is also effective in triggering the emotions. These findings show that there is a change in the voice in the anxious state and that the acoustic parameters are influenced by the anxious state. For this reason, acoustic analysis can be used as an expert decision support system for the diagnosis of anxiety.

Go to article

Authors and Affiliations

Turgut Özseven
Muharrem Düğenci
Ali Doruk
Hilal İ. Kahraman
Download PDF Download RIS Download Bibtex

Abstract

In the paper the idea of rational polynomial windows optimised towards low level of Fourier spectrum's sidelobes is presented. A relevant advantage of the polynomial windows family and their modifications is their ability to easily change their properties changing only the values of the polynomial coefficients. The obtained frequency characteristics demonstrate better properties of proposed rational Windows than their standard polynomial equivalents requiring only the additional division operation. Such approach does not increase the computational complexity in significant way and the great advantage of polynomial windows which is their low computational complexity is preserved.

Go to article

Authors and Affiliations

Krzysztof Okarma
Download PDF Download RIS Download Bibtex

Abstract

The article presents an application of Prony’s method with some known components in the analysis of electric power quality. Modifications of the Prony algorithm broaden the scope of method application. Modification of the filter of known components enables more accurate analysis of the parameters of unknown components and components with known or assumed frequencies. This article presents a comparison of the results of analyses conducted with the proposed algorithm for simulated and real signals and the results obtained by means of a commercial electric power quality testing device, operating in class A and using the Fourier transform. The proposed method enables to estimate the levels of the harmonic components, the frequency of the fundamental signal and real parameters of the interharmonic components, which are grouped and averaged in the contemporary monitoring equipment. Knowledge of the individual parameters of the interharmonics has considerable diagnostic importance while removing causes of incorrect operation affecting sensitive equipment in some electric power systems. Additionally, the algorithm is capable of analyzing exponentially damped components and finds its application in analysis of disturbances, for example, transient oscillations.

Go to article

Authors and Affiliations

Janusz Mroczka
Jarosław Zygarlicki
Download PDF Download RIS Download Bibtex

Abstract

In this paper, we propose a new method of measuring the target velocity by estimating the scaling parameter of a chaos-generating system. First, we derive the relation between the target velocity and the scaling parameter of the chaos-generating system. Then a new method for scaling parameter estimation of the chaotic system is proposed by exploiting the chaotic synchronization property. Finally, numerical simulations show the effectiveness of the proposed method in target velocity measurement.

Go to article

Authors and Affiliations

Lidong Liu
Jifeng Hu
Zishu He
Chunlin Han
Huiyong Li
Jun Li
Download PDF Download RIS Download Bibtex

Abstract

This article presents a way of analyzing the transfer function of electronic signal amplifiers. It also describes the possibility of using signal precorrection which improves the parasitic harmonics in the THD (Total Harmonic Distortion) of the amplified signal by correcting linearity of the tested amplifier’s transfer function. The proposed method of analyzing and presenting the transfer function allows to diagnose the causes of generating parasitic harmonics, what makes it a useful tool when designing low distortion amplifier systems, such as e.g. amplifiers in measurement systems. The presented THD correction can be used in e.g. amplifier systems that cooperate with arbitrary generators.

Go to article

Authors and Affiliations

Janusz Mroczka
Jarosław Zygarlicki
Download PDF Download RIS Download Bibtex

Abstract

The paper presents a method of adaptation of the original second order Prony’s method for applications in lowcost digital measurement systems with low computing performance. The presented method can be used in measuring systems where it is important to obtain in real time the values of amplitude, frequency, initial phase and damping coefficient of a single sinusoidal component of an analysed signal. The paper presents optimized, in terms of the number of mathematical operations, implementation of the method in selected embedded devices as well as the calculation times of the method for each platform.

Go to article

Authors and Affiliations

Jarosław Zygarlicki
Download PDF Download RIS Download Bibtex

Abstract

Enhanced Traffic Management System (ETMS) stores all the information gathered by the Federal Aviation Administration (FAA) from aircraft flying in the US airspace. The data stored from each flight includes the 4D trajectory (latitude, longitude, altitude and timestamp), radar data and flight plan information. Unfortunately, there is a data quality problem in the vertical channel and the altitude component of the trajectories contains some isolated samples in which a wrong value was stored. Overall, the data is generally accurate and it was found that only 0.3% of the altitude values were incorrect, however the impact of these erroneous data in some analyses could be important, motivating the development of a filtering procedure. The approach developed for filtering ETMS altitude data includes some specific algorithms for problems found in this particular dataset, and a novel filter to correct isolated bad samples (named Despeckle filter). As a result, all altitude errors were eliminated in 99.7% of the flights affected by noise, while preserving the original values of the samples without bad data. The algorithm presented in this paper attains better results than standard filters such as the median filter, and it could be applied to any signal affected by noise in the form of spikes

Go to article

Authors and Affiliations

Rafael Palacios
R. John Hansman
Download PDF Download RIS Download Bibtex

Abstract

A checkweigher is an automatic machine to measure the weight of in-motion products. It is usually located around the end of the production process and ensures the weight of a product within specified limits. Any products are taken out of line if their weights are out of the specified limits. It is usually equipped with an optical device. It is used to make a trigger to set the time duration to allow a product to move completely on the weigh belt for sampling the weight. In this paper, a new method of mass measurement for checkweighers is proposed which uses just signal processing without the optical device. The effectiveness of the method is shown through experiments. Also a possibility of faster estimation of weight is shown.
Go to article

Authors and Affiliations

Kengo Fukuda
Koji Yoshida
Tetsuya Kinugasa
Morihito Kamon
Yoichiro Kagawa
Toshiro Ono
Download PDF Download RIS Download Bibtex

Abstract

There is a consensus in signal processing that the Gaussian kernel and its partial derivatives enable the development of robust algorithms for feature detection. Fourier analysis and convolution theory have a central role in such development. In this paper, we collect theoretical elements to follow this avenue but using the q-Gaussian kernel that is a nonextensive generalization of the Gaussian one. Firstly, we review the one-dimensional q-Gaussian and its Fourier transform. Then, we consider the two-dimensional q-Gaussian and we highlight the issues behind its analytical Fourier transform computation. In the computational experiments, we analyze the q-Gaussian kernel in the space and Fourier domains using the concepts of space window, cut-o frequency, and the Heisenberg inequality.

Go to article

Authors and Affiliations

Paulo S. Rodrigues
Gilson A. Giraldi
Download PDF Download RIS Download Bibtex

Abstract

The article presents methods that help in the elimination of mutual clutter as well as the consequences of two FM sounding signal sonars operating in the same body of water and frequency band. An in-depth analysis of mutual clutter was carried out. The effects of sounding signal differentiation were determined, as was the Doppler effect on mutual clutter suppression. One of the methods analysed is of particular interest in a situation in which collaborating sonars are operating in opposite frequency modulation directions. This method is effective for both linear and hyperbolic frequency modulations. A formula was derived, identifying exactly how much quantities of clutter may be lessened. The work included comprehensive computer simulations and measurements as well as tests in real-life conditions.

Go to article

Authors and Affiliations

Jacek Marszal
Mariusz Rudnicki
Andrzej Jedel
Roman Salamon
Iwona Kochańska
Download PDF Download RIS Download Bibtex

Abstract

The purpose of this work is to distinguish between Acoustic Emission (AE) signals coming from mechanical friction and AE signals coming from concrete cracking, recorded during fourteen seismic simulations conducted with the shaking table of the University of Granada on a reinforced concrete slab supported on four steel columns. To this end, a particular criterion is established based on the Root Mean Square of the AE waveforms calculated in two different temporal windows. This criterion includes a parameter calculated by optimizing the correlation between the mechanical energy dissipated by the specimen (calculated by means of measurements with accelerometers and displacement transducers) and the energy obtained from the AE signals recorded by low-frequency piezoelectric sensors located on the specimen. The final goal of this project, initiated four years ago, is to provide a reliable evaluation of the level of damage of Reinforced Concrete specimens by means of AE signals to be used in future Structural Health Monitoring strategies involving RC structures.
Go to article

Authors and Affiliations

Francisco A. Sagasta
Juan L. Torné
Antonio Sánchez-Parejo
Antolino Gallego
Download PDF Download RIS Download Bibtex

Abstract

This paper presents an overview of algorithms for one-phase active power estimation using digital signal processing in the time domain and in the frequency domain, and compares the properties of these algorithms for a sinusoidal test signal. The comparison involves not only algorithms that have already been published, but also a new algorithm. Additional information concerning some known algorithms is also included. We present the results of computer simulations in MATLAB and measurement results gained by means of computer plug-in boards, both multiplexed and using simultaneous signal sampling. The use of new cosine windows with a recently published iterative algorithm is also included, and the influence of additive noise in the test signal is evaluated.

Go to article

Authors and Affiliations

Milos Sedlacek
Zdenek Stoudek
Download PDF Download RIS Download Bibtex

Abstract

Videoplethysmography is currently recognized as a promising noninvasive heart rate measurement method advantageous for ubiquitous monitoring of humans in natural living conditions. Although the method is considered for application in several areas including telemedicine, sports and assisted living, its dependence on lighting conditions and camera performance is still not investigated enough. In this paper we report on research of various image acquisition aspects including the lighting spectrum, frame rate and compression. In the experimental part, we recorded five video sequences in various lighting conditions (fluorescent artificial light, dim daylight, infrared light, incandescent light bulb) using a programmable frame rate camera and a pulse oximeter as the reference. For a video sequence-based heart rate measurement we implemented a pulse detection algorithm based on the power spectral density, estimated using Welch’s technique. The results showed that lighting conditions and selected video camera settings including compression and the sampling frequency influence the heart rate detection accuracy. The average heart rate error also varies from 0.35 beats per minute (bpm) for fluorescent light to 6.6 bpm for dim daylight.

Go to article

Authors and Affiliations

Jaromir Przybyło
Eliasz Kańtoch
Mirosław Jabłoński
Piotr Augustyniak
Download PDF Download RIS Download Bibtex

Abstract

A limited ability to discriminate between different materials is the fundamental problem with all conventional eddy-current-based metal detectors. This paper presents the use, evaluation and classification of nontraditional excitation signals for eddy-current metal detectors to improve their detection and discrimination ability. The presented multi-frequency excitation signals are as follows: a step sweep sine wave, a linear frequency sweep and sin(x)/x signals. All signals are evaluated in the frequency domain. Amplitude and phase spectra and polar graphs of the detector output signal are used for classification and discrimination of the tested objects. Four different classifiers are presented. The classification results obtained with the use of poly-harmonic signals are compared with those obtained with a classical single-tone method. Multifrequency signals provide more detailed information, due to the response function – the frequency characteristic of a detected object, than standard single-tone methods. Based on the measurements and analysis, a metal object can be better distinguished than when using a single-tone method.
Go to article

Authors and Affiliations

Jakub Svatoš
Tomáš Pospíšil
Josef Vedral
Download PDF Download RIS Download Bibtex

Abstract

This paper presents a new modification of the least-squares Prony’s method with reduced sampling, which allows for a significant reduction in the number of the analysed signal samples collected per unit time. The specific combination of non-uniform sampling with Prony’s method enables sampling of the analysed signals at virtually any average frequency, regardless of the Nyquist frequency, maintaining high accuracy in parameter estimation of sinusoidal signal components. This property allows using the method in measuring devices, such as for electric power quality testing equipped with low power signal processors, which in turn contributes to reducing complexity of these devices. This paper presents research on a method for selecting a sampling frequency and an analysis window length for the presented method, which provide maximum estimation accuracy for Prony’s model component parameters. This paper presents simulation tests performed in terms of the proposed method application for analysis of harmonics and interharmonics in electric power signals. Furthermore, the paper provides sensitivity analysis of the method, in terms of common interferences occurring in the actual measurement systems.

Go to article

Authors and Affiliations

Janusz Mroczka
Jarosław Zygarlicki
Download PDF Download RIS Download Bibtex

Abstract

The sports landscape is constantly changing due to innovation and entrepreneurship. The availability of technology led to the emergence of esports and augmented sports. Biofeedback and sensing technologies can be used for athlete monitoring and training purposes. Research on motor control deals with planning and execution of bodily movements and provides some insights towards formal presentation of sports.
Previous research provided many sports categorization models. On many occasions, published articles did not distinguish competitive gameplay activities (gaming) from athletic performance (esports). Our goal was to define esports by extending existing universal sport definitions and propose a novel modular computational framework for categorizing sports through environments and signals.
We have fulfilled our goals by illustrating how signals flow within competitive (sports) environments. Our esports definition introduces esports as a group of sports similar to motorsports. Moreover, we have defined mathematical foundations for signal processing by various actors (athletes, referees, environments, intermediate processing steps). We have demonstrated that representing sports as a multidimensional signal can lead to the categorization of sports through computation. We claim that our approach could be applied to transfer training methods from similar sports, analysis of the training process, and referee error measurement.
Our study was not without limitations. Further research is required to validate our theoretical model by embedding available variables in latent space to calculate similarity measures between sports.
Go to article

Authors and Affiliations

Andrzej Białecki
1
Robert Białecki
2
Jan Gajewski
2

  1. Warsaw University of Technology, Warsaw, Poland
  2. Józef Piłsudski University of Physical Education, Warsaw, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this article, an analysis of an innovative system for filtering signals in the audible range (16 Hz - 20 kHz) on programmable logic devices using a filters with a finite impulse response, is presented. Mentioned system was neat combination of software and hardware platform, where in the program layer a multiple programming languages including VHDL, JavaScript, Matlab or HTML were used to create completely useful application. To determine the coefficients of polynomial filters the Matlab Filter Design & Analysis Tool was used. Thanks to the developed graphic layer, a user-friendly interface was created, which allows easily transfer the required coefficients from the computer to the executive system. The practical implementation made on the FPGA platform, specifically on the Altera DE2- 115 development kit with the FPGA Cyclone IV, was compared with simulation realization of Matlab FIR filters. The performed research confirm the effectiveness of filtration in real time with up to 128th order of the filter for both audio channels simultaneously in FPGA-based system.
Go to article

Authors and Affiliations

Adrian Lipowski
1
Paweł Majewski
1
Sławomir Pluta
1

  1. Opole University Technology, Opole, Poland
Download PDF Download RIS Download Bibtex

Abstract

In this article is revealed the systems of a good delivery witch implement unmanned aerial vehicles during providing the service. the one channel systems of a goods delivery are a goal of this research work. the close analysing of their functional features, the classification, the types and parameters of different systems from this band are presented. in addition, the modelling of the different types of the one channel systems of goods delivery are has done.

Go to article

Authors and Affiliations

Roman N. Kvyetnyy
Yaroslav A. Kulyk
Bogdan P. Knysh
Yuryy Yu. Ivanov
Andrzej Smolarz
Orken Mamyrbaev
Aimurat Burlibayev
Download PDF Download RIS Download Bibtex

Abstract

The paper presents an iterative identification method dedicated for industrial processes. The method consists of two steps. In the first step, a MISO system is identified with the Modulating Functions Method to obtain sub-models with a common denominator. In the second step, the obtained subsystems are re-identified. This procedure enables to obtain the set of models with different denominators of the transfer functions. The algorithmwas used for on-line identification of a glass conditioning process. Identification window is divided into intervals, in which the models can be updated based on recent process data, with the use of the integral state observer. Results of the performed simulations for the identified models are compared with the historical process data.
Go to article

Authors and Affiliations

Witold Byrski
1
Michał Drapała
1

  1. Department of Automatic Control and Robotics, AGH University of Science and Technology, Al. Mickiewicza 30, 30-059 Kraków, Poland
Download PDF Download RIS Download Bibtex

Abstract

The study investigates the use of speech signal to recognise speakers’ emotional states. The introduction includes the definition and categorization of emotions, including facial expressions, speech and physiological signals. For the purpose of this work, a proprietary resource of emotionally-marked speech recordings was created. The collected recordings come from the media, including live journalistic broadcasts, which show spontaneous emotional reactions to real-time stimuli. For the purpose of signal speech analysis, a specific script was written in Python. Its algorithm includes the parameterization of speech recordings and determination of features correlated with emotional content in speech. After the parametrization process, data clustering was performed to allows for the grouping of feature vectors for speakers into greater collections which imitate specific emotional states. Using the t-Student test for dependent samples, some descriptors were distinguished, which identified significant differences in the values of features between emotional states. Some potential applications for this research were proposed, as well as other development directions for future studies of the topic.
Go to article

Authors and Affiliations

Zuzanna Piątek
1
Maciej Kłaczyński
1

  1. AGH University of Science and Technology, Faculty of Mechanical Engineering and Robotics, Department of Mechanics and Vibroacoustics, Cracow, Poland
Download PDF Download RIS Download Bibtex

Abstract

In order to design a stable and reliable voice communication system, it is essential to know how many resources are necessary for conveying quality content. These parameters may include objective quality of service (QoS) metrics, such as: available bandwidth, bit error rate (BER), delay, latency as well as subjective quality of experience (QoE) related to user expectations. QoE is expressed as clarity of speech and the ability to interpret voice commands with adequate mean opinion score (MOS) grades. This paper describes a quality evaluation study of a two-way speech transmission system via bandwidth over power line – power line communication (BPL-PLC) technology in an operating underground mine. We investigate how different features of the available wired medium can affect end-user quality. The results of the described study include: two types of coupling (capacitive and inductive), two transmission modes (mode 1 and 11), and four language sets of speech samples (American English, British English, German, and Polish) encoded at three different bit rates (8, 16, and 24 kbps). Our findings can aid both researchers working on low-bit rate coding and compression, signal processing and speech perception, as well as professionals active in the mining and oil industry.
Go to article

Authors and Affiliations

Przemysław Falkowski-Gilski
1
Grzegorz Debita
2

  1. Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
  2. General Tadeusz Kosciuszko Military University of Land Forces, Wrocław, Poland
Download PDF Download RIS Download Bibtex

Abstract

In the early days, consumption of multimedia content related with audio signals was only possible in a stationary manner. The music player was located at home, with a necessary physical drive. An alternative way for an individual was to attend a live performance at a concert hall or host a private concert at home. To sum up, audio-visual effects were only reserved for a narrow group of recipients. Today, thanks to portable players, vision and sound is at last available for everyone. Finally, thanks to multimedia streaming platforms, every music piece or video, e.g. from one’s favourite artist or band, can be viewed anytime and everywhere. The background or status of an individual is no longer an issue. Each person who is connected to the global network can have access to the same resources. This paper is focused on the consumption of multimedia content using mobile devices. It describes a year to year user case study carried out between 2015 and 2019, and describes the development of current trends related with the expectations of modern users. The goal of this study is to aid policymakers, as well as providers, when it comes to designing and evaluating systems and services.

Go to article

Authors and Affiliations

Przemysław Falkowski-Gilski
Download PDF Download RIS Download Bibtex

Abstract

The main purpose of the presented research is to investigate the partial discharge (PD) phenomenon variability under long-term AC voltage with particular consideration of the selected physical quantities changes while measured and registered by the acoustic emission method (AE). During the research a PD model source generating surface discharges is immersed in the brand new insulation mineral oil. Acoustic signals generated by the continuously occurred PDs within 168 hours are registered. Several qualitative and quantitative indicators are assigned to describe the PD variability in time. Furthermore, some longterm characteristics of the applied PD model source in mineral oil, are also presented according to acoustic signals emitted by the PD. Finally, various statistical tools are applied for the results analysis and presentation. Despite there are numerous contemporary research papers dealing with long-term PD analysis, such complementary and multiparametric approach has not been presented so far, regarding the presented research. According to the presented research from among all assigned indicators there are discriminated descriptors that could depend on PD long-term duration. On the grounds of the regression models analysis there are discovered trends that potentially allow to apply the results for modeling of the PD variability in time using the acoustic emission method. Subsequently such an approach may potentially support the development and extend the abilities of the diagnostic tools and maintenance policy in electrical power industry.

Go to article

Authors and Affiliations

Michał Kunicki
Download PDF Download RIS Download Bibtex

Abstract

This work presents an analysis of vibration signals for bearing defects using a proposed approach that includes several methods of signal processing. The goal of the approach is to efficiently divide the signal into two distinct components: a meticulously organized segment that contains relatively straightforward information, and an inherently disorganized segment that contains a wealth of intricately complex data. The separation of the two component is achieved by utilizing the weighted entropy index (WEI) and the SVMD algorithm. Information about the defects was extracted from the envelope spectrum of the ordered and disordered parts of the vibration signal. Upon applying the proposed approach to the bearing fault signals available in the Paderborn university database, a high amplitude peak can be observed in the outer ring fault frequency (45.9 Hz). Likewise, for the signals available in XJTU-SY, a peak is observed at the fault frequency (108.6 Hz).
Go to article

Bibliography

[1] A. Nabhan, N.M. Ghazaly, A. Samy, and M.O. Mousa. Bearing fault detection techniques – a review. Turkish Journal of Engineering, Sciences and Technology, 3(2):1–18, 2015.
[2] P.P. Kharche and S.V. Kshirsagar. Review of fault detection in rolling element bearing. International Journal of Innovative Research in Advanced Engineering, 1(5):169–174, 2014.
[3] Y. Du, S. Zhou, X. Jing, Y. Peng, H. Wu, and N. Kwok. Damage detection techniques for wind turbine blades: A review. Mechanical Systems and Signal Processing, 141:106445, 2020. doi: 10.1016/j.ymssp.2019.106445.
[4] Z. Hameed, Y.S. Hong, Y.M. Cho, S.H. Ahn, and C.K. Song. Condition monitoring and fault detection of wind turbines and related algorithms: A review. Renewable and Sustainable Energy Reviews, 13(1):1–39, 2009. doi: 10.1016/j.rser.2007.05.008.
[5] K. Bouaouiche, Y. Menasria, and D. Khalfa. Diagnosis of rotating machine defects by vibration analysis. Acta IMEKO, 12(1):1–6, 2023. doi: 10.21014/actaimeko.v12i1.1438.
[6] S. Riaz, H. Elahi, K. Javaid, and T. Shahzad. Vibration feature extraction and analysis for fault diagnosis of rotating machinery-a literature survey. Asia Pacific Journal of Multidisciplinary Research, 5(1):103–110, 2017.
[7] M. Avoci Ugwiri, M. Mpia, and A. Lay-Ekuakille. Vibrations for fault detection in electric machines. IEEE Instrumentation & Measurement Magazine, 23(1):66–72, 2020. doi: 10.1109/MIM.2020.8979527.
[8] T. Liu, S. Yan, and W. Zhang. Time–frequency analysis of nonstationary vibration signals for deployable structures by using the constant-Q nonstationary gabor transform. Mechanical Systems and Signal Processing, 75:228–244, 2016. doi: 10.1016/j.ymssp.2015.12.015.
[9] K. Dragomiretskiy and D. Zosso. Variational mode decomposition. IEEE Transactions on Signal Processing, 62(3):531–544, 2014. doi: 10.1109/TSP.2013.2288675.
[10] M. Nazari and S.M. Sakhaei. Successive variational mode decomposition. Signal Processing, 174:107610, 2020. doi: /10.1016/j.sigpro.2020.107610.
[11] Y. Miao, B. Zhang, J. Lin, M. Zhao, H. Liu, Z. Liu, and H. Li. A review on the application of blind deconvolution in machinery fault diagnosis. Mechanical Systems and Signal Processing, 163:108202, 2022. doi: 10.1016/j.ymssp.2021.108202.
[12] T. Barszcz and N. Sawalhi. Fault detection enhancement in rolling element bearings using the minimum entropy deconvolution. Archives of Acoustics, 37(2):131–141, 2012. doi: 10.2478/v10168-012-0019-2.
[13] T. Barszcz and A. Jabłoński. A novel method for the optimal band selection for vibration signal demodulation and comparison with the Kurtogram. Mechanical Systems and Signal Processing, 25(1):431–451, 2011. doi: 10.1016/j.ymssp.2010.05.018.
[14] A. Moshrefzadeh and A. Fasana. The Autogram: An effective approach for selecting the optimal demodulation band in rolling element bearings diagnosis. Mechanical Systems and Signal Processing, 105:294–318, 2018. doi: 10.1016/j.ymssp.2017.12.009.
[15] D. Neupane and J. Seok. Bearing fault detection and diagnosis using Case Western Reserve University dataset with deep learning approaches: A review. IEEE Access, 8:93155–93178, 2020. doi: 10.1109/ACCESS.2020.2990528.
[16] K. Bouaouiche, Y. Menasria, and D. Khalifa. Detection of defects in a bearing by analysis of vibration signals. Diagnostyka, 24(2):2023203, 2023. doi: 10.29354/diag/162230.
[17] G. Chen, W. Xie, and Y. Zhao. Wavelet-based denoising: A brief review. In 2013 Fourth International Conference on Intelligent Control and Information Processing (ICICIP), pages 570–574, Beijing, China, 2013. IEEE. doi: 10.1109/ICICIP.2013.6568140.
[18] M. Rhif, B.A. Abbes, I.R. Farah, B. Martínez, and Y.-F. Sang. Wavelet transform application for/in non-stationary time-series analysis: A review. Applied Sciences, 9(7):1345, 2019. doi: 10.3390/app9071345.
[19] A. Dibaj, R. Hassannejad, M.M. Ettefagh, and M.M. Ehghaghi. Incipient fault diagnosis of bearings based on parameter-optimized VMD and envelope spectrum weighted kurtosis index with a new sensitivity assessment threshold. ISA Transactions, 114:413–433, 2021. doi: 10.1016/j.isatra.2020.12.041.
[20] Y. Li, W. Sun, R. Jiang, and Y. Han. Signal-segments cross-coherence method for nonlinear structural damage detection using free-vibration signals. Advances in Structural Engineering, 23(6):1041–1054, 2020. doi: 10.1177/1369433219886962.
[21] J. Yang, C. Zhou, and X. Li. Research on fault feature extraction method based on parameter optimized variational mode decomposition and robust independent component analysis. Coatings, 12(3):419, 2022. doi: 10.3390/coatings12030419.
[22] R.M. Mehmood, R. Du, and H.J. Lee. Optimal feature selection and deep learning ensembles method for emotion recognition from human brain EEG sensors. IEEE Access, 5:14797–14806, 2017. doi: 10.1109/ACCESS.2017.2724555.
[23] S.-H. Oh, Y.-R. Lee, and H.-N. Kim. A novel EEG feature extraction method using Hjorth parameter. International Journal of Electronics and Electrical Engineering, 2(2):106–110, 2014. doi: 10.12720/ijeee.2.2.106-110.
[24] Z. Wang, J. Zhou, J. Wang, W. Du, J. Wang, X. Han, and G. He. A novel fault diagnosis method of gearbox based on maximum kurtosis spectral entropy deconvolution. IEEE Access, 7:29520–29532, 2019. doi: 10.1109/ACCESS.2019.2900503.
[25] B. Bono, J. Arnau, R. Alarcón, and M.J. Blanca. Bias, precision, and accuracy of skewness and kurtosis estimators for frequently used continuous distributions. Symmetry, 12(1):19, 2019. doi: 10.3390/sym12010019.
[26] S. Kim, D. An, and J.-H. Choi. Diagnostics 101: A tutorial for fault diagnostics of rolling element bearing using envelope analysis in MATLAB. Applied Sciences, 10(20):7302, 2020. doi: 10.3390/app10207302.
[27] X. Ye, Y. Hu, J. Shen, R. Feng, and G. Zhai. An improved empirical mode decomposition based on adaptive weighted rational quartic spline for rolling bearing fault diagnosis. IEEE Access, 8:123813–123827, 2020. doi: 10.1109/ACCESS.2020.3006030.
[28] V. Kannan, H. Li, and D.V. Dao. Demodulation band optimization in envelope analysis for fault diagnosis of rolling element bearings using a real-coded genetic algorithm. IEEE Access, 7:168828–168838, 2019. doi: 10.1109/ACCESS.2019.2954704.
[29] P.H. Jain and S.P. Bhosle. Analysis of vibration signals caused by ball bearing defects using timedomain statistical indicators. International Journal of Advanced Technology and Engineering Exploration, 9(90):700, 2022. doi: 10.19101/IJATEE.2021.875416.
[30] C.R. Soto-Ocampo, J.M. Mera, J.D. Cano-Moreno, and J.L. Garcia-Bernardo. Low-cost, highfrequency, data acquisition system for condition monitoring of rotating machinery through vibration analysis-case study. Sensors, 20(12):3493, 2020. doi: 10.3390/s20123493.
[31] XJTU-SY bearing database. https://biaowang.tech/xjtu-sy-bearing-datasets/.
[32] Paderborn University database. http://mb.uni-paderborn.de/kat/datacenter.
[33] G.L. McDonald, Q. Zhao, and M.J. Zuo. Maximum correlated Kurtosis deconvolution and application on gear tooth chip fault detection. Mechanical Systems and Signal Processing, 33:237–255, 2012. doi: 10.1016/j.ymssp.2012.06.010.
[34] H. Cui, Y. Guan, and H. Chen. Rolling element fault diagnosis based on VMD and sensitivity MCKD. IEEE Access, 9:120297–120308, 2021. doi: 10.1109/ACCESS.2021.3108972.
Go to article

Authors and Affiliations

Karim Bouaouiche
1
ORCID: ORCID
Yamina Menasria
1
ORCID: ORCID
Dalila Khalfa
1
ORCID: ORCID

  1. Electromechanical Engineering Laboratory, Badji Mokhtar University, Annaba, Algeria

This page uses 'cookies'. Learn more