Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 4
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Presently, finding effective, simple, inexpensive, hygienic and safe pest control agents are the biggest challenges in management of stored product insects, where those features are available in most physical factors. The insecticidal efficiency of four diversified physical control agents (ultraviolet and microwave irradiations, thermal remediation and silica nanoparticles) were assayed against the most common coleopteran insect species ( Sitophilus oryzae L. and Tribolium castaneum Herbst) on stored wheat. Exposing tested insects to microwave irradiations (2450 MHz) for 25 sec gave preventive efficiency for stored material, which reached 97.68 and 99.02%, respectively. Sufficient exposure periods to kill 50% of the coleopteran adults (LT50%) were 13 and 14 sec, respectively. For effective control with UV radiations, S. oryzae should be exposed for 12 h and T. castaneum for 24 h. An exposure period of 24 h caused progeny reduction 95.24 and 89.72% and gave preventive efficiency of 94.25 and 93.37%, respectively. Values of LT50% were 56.76 and 74.04 h, respectively. Exposing infested samples of the tested species to 70oC for 10 min killed 100% of adults and caused complete cessation of egg laying. Furthermore, 65°C or 70°C caused full progeny reduction. The lowest level of stored product weight loss (1.15 and 1.35%, respectively) occurred at 70°C, where sufficient exposure temperatures to kill 50% of the coleopteran adults (LTD50%) were 60.95°C and 61.63°C, respectively. Synthetic silica nanoparticles (SSiNPs) were more toxic against the tested populations than bio-silica nanoparticles (BSiNPs) after 48–72 h. A concentration of 1.00 g kg–1 of tested silica nanoparticles caused significant reduction in adult populations, saved wheat grain vitality and gave least lost weights of flour (3.35–6.85%).
Go to article

Authors and Affiliations

Khalil A. Draz
1
Magdy I. Mohamed
2
Reda M. Tabikha
1
Adnan A. Darwish
1
Mohamed A. Abo-Bakr
1

  1. Plant Protection Department, Faculty of Agriculture, Damanhour University, Damanhour, Egypt
  2. Stored Product Pests Department, Plant Protection Research Institute, Agricultural Research Center, Alexandria, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The insecticidal efficiency of Ag-loaded 4A-zeolite (ZAg) and its formulations with Rosmarinus officinalis essential oil (RO) was evaluated against Sitophilus oryzae (L.) and Rhyzopertha dominica (F.). For comparison, different rates of ZAg (0.25, 0.5, 0.75, and 1 g ⋅ kg–1 wheat) were used solely and in a combination with LC50 concentrations of RO. Mortality was assessed after 7, 14, and 21 days of insect exposure to treated wheat. The progeny production was also evaluated. The use of ZAg accomplished a complete mortality (100%) on S. oryzae and 96.67% on R. dominica as well as 100% mortality of progeny against the two insect species after the longest exposing duration (21 days), at the highest rate (1 g ⋅ kg–1). On the other hand, the complete mortalities of ZAg formulations on S. oryzae were obtained after 14 d of treatment with F1 formulation (0.605 g ⋅ kg–1 RO + 0.25 g ⋅ kg–1 ZAg) and after 7 days with the other tested formulations. In addition, the complete mortality on R. dominica was obtained only by F8 (0.059 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulation after 14 days of treatment. Concerning the efficiency of the examined formulations on the progeny of S. oryzae, F1 (0.605 g ⋅ kg–1 RO + 0.25 g ⋅ kg–1 ZAg) and F2 (0.605 g ⋅ kg–1 RO + 0.5 g ⋅ kg–1 ZAg) formulations recorded 100% mortality. In addition, F3 (0.605 g ⋅ kg–1 RO + 0.75 g ⋅ kg–1 ZAg) and F4 (0.605 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulations suppressed the progeny production. Furthermore, the complete mortality of R. dominica progeny was obtained with F7 (0.059 g ⋅ kg–1 RO + 0.75 g ⋅ kg–1 ZAg) and F8 (0.059 g ⋅ kg–1 RO + 1 g ⋅ kg–1 ZAg) formulations. ZAg, especially its formulations with R. officinalis oil, had potential effects against two stored-product insects. F1 and F8 formulations could be treated efficiently on S. oryzae and R. dominica, respectively.

Go to article

Authors and Affiliations

Ahmed M. El-Bakry
Hanan F. Youssef
Nahed F. Abdel-Aziz
Elham A. Sammour
Download PDF Download RIS Download Bibtex

Abstract

The fumigation toxicity of Melaleuca alternifolia (Maid. & Betche) Cheel. (Myrtales: Myrtaceae) essential oil and its major fractions was studied under laboratory conditions against adults of Sitophilus oryzae L. (Coleoptera: Curculionidae) to protect wheat grains ( Triticum aestivum L.) (Poales: Poaceae) from this global pest that destroys the host plant during storage. By analyzing M. alternifolia essential oil (EO) using GC/MS terpinen-4-ol and γ-terpinene were detected as major components. In the fumigation toxicity, M. alternifolia EO showed the highest toxicity (LC50 = 0.31 μl · l–1 air), followed by terpinen-4-ol (LC 50 = 23.65 μl · l–1 air) and γ-terpinene was the least toxic (LC 50 = 43.55 μl · l–1 air). When tested for their insecticidal activities against S. oryzae in stored wheat, no progeny emerged after 3 months of treatment with M. alternifolia EO at 10 mg · g–1 or with terpinen-4-ol and γ-terpinene for 2 months. However, none of these compounds could protect wheat grain from damage throughout the entire study period (4 months). Interestingly, all tested compounds at the highest application rate did not show any phytotoxic effects after 4 months of storage.
Go to article

Authors and Affiliations

Seham Mansour Ismail
1

  1. Department Insect Population Toxicology, Central Agricultural Pesticides Laboratory, Agriculture Research Center, 12618, Giza, Egypt
Download PDF Download RIS Download Bibtex

Abstract

The present study was conducted to evaluate the insecticidal efficiency and safety of zinc oxide nanoparticles (ZnO NPs) and hydrophilic silica nanoparticles (SiO2 NPs) against: adults of rice weevil (Sitophilus oryzae L.); red flour beetle (Tribolium castaneum Herbst.) and cowpea beetle (Callosobruchus maculatus F.) results showed that, both ZnO NPs and hydrophilic SiO2 NPs exhibited a significant toxic effect (df, F and p < 0.5) against S. oryzae and C. maculatus at the highest concentration while T. castaneum showed high resistance against the two tested materials. At the end of the experiment, recorded mortality was: 81.6, 98.3 and 58.3% at the highest concentration used for each insect (0.3, 2 and 8 gm ⋅ kg–1 of SNPs with C. maculatus, S. oryzae and T. castaneum, respectively), while mortality was 88.3, 100 and 38.3% at the highest concentration used for each insect (0.6, 2.5 and 8 gm ⋅ kg–1 of ZnO NPs with C. maculatus, S. oryzae and T. castaneum, respectively). Both tested materials caused high reductions in F1-progeny (%) with C. maculatus and S. oryzae. Histopathological examination of male mice livers showed hepatic architecture with congested blood sinusoids, binucleated hepatocytes nuclei, dilated central vein and margainated chromatin in some nuclei. Histopathological assessment of the lungs showed normal histoarchitecture. There were no differences in alveolar septa, bronchiolar and epithelium of the treated and untreated animals. Silica and zinc oxide nanoparticles have a good potential to be used as stored seed protectant alternatives if applied with proper safety precautions.

Go to article

Authors and Affiliations

Samia Ali Haroun
Mahmoud Elsaid Elnaggar
Doaa Mohamed Zein
Rehab Ibrahim Gad

This page uses 'cookies'. Learn more