Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 5
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

Hydrogen (H2) and liquid petroleum gas (LPG) sensing properties of SnO2 thin films obtained by direct oxidation of chemically deposited SnS films has been studied. The SnS film was prepared by a chemical technique called SILAR (Successive Ionic Layer Adsorption and Reaction). The sensor element comprises of a layer of chemically deposited SnO2 film with an overlayer of palladium (Pd) sensitiser. The Pd sensitiser layer was also formed following a chemical technique. The double layer element so formed shows significantly high sensitivity to H2 and LPG. The temperature variation of sensitivity was studied and the maximum sensitivity of 99.7% was observed at around 200°C for 1 vol% H2 in air. The response time to target gas was about 10 seconds and the sensor element was found to recover to its original resistance reasonably fast. The maximum sensitivity of 98% for 1.6 vol% LPG was observed at around 325°C. The sensor response and recovery was reasonably fast (less than one minute) at this temperature.

Go to article

Authors and Affiliations

P. Mitra
S. Mondal
Download PDF Download RIS Download Bibtex

Abstract

Sodium-ion batteries (SIBs) have attracted substantial interest as an alternative to lithium-ion batteries because of the low cost. There have been many studies on the development of new anode materials that could react with sodium by conversion mechanism. SnO2 is a promising candidate due to its low cost and high theoretical capacity. However, SnO2 has the same problem as other anodes during the conversion reaction, i.e., the volume of the anode repeatedly expands and contracts by cycling. Herein, anode is composed of carbon nanofiber embedded with SnO2 nanopowder. The resultant electrode showed improvement of cyclability. The optimized SnO2 electrode showed high capacity of 1275 mAh g–1 at a current density of 50 mA g–1. The high conductivity of the optimized electrode resulted in superior electrochemical performance.
Go to article

Bibliography

[1] L. Yue, H. Zhao, Z. Wu, J. Liang, S. Lu, G. Chen, S. Gao, B. Zhong, X. Guo, X. Sun, J. Mater. Chem. A. 8 (23), 11493-11510 (2020).
[2] K. Mishra, N. Yadav, S. Hashmi, J. Mater. Chem. A. 8 (43), 22507- 22543 (2020).
[3] M .K. Sadan, A.K. Haridas, H. Kim, C. Kim, G.-B. Cho, K.-K. Cho, J.-H. Ahn, H.-J. Ahn, Nanoscale Advances. 2 (11), 5166-5170 (2020).
[4] M .K. Sadan, H. Kim, C. Kim, S. Cha, K.-K. Cho, K.-W. Kim, J .-H. Ahn, H.-J. Ahn, J. Mater. Chem. A. 8 (19), 9843-9849 (2020).
[5] Z. Zhu, F. Cheng, Z. Hu, Z. Niu, J. Chen, J. Power Sources. 293, 626-634 (2015).
[6] H. Kim, M.K. Sadan, C. Kim, S.-H. Choe, K.-K. Cho, K.-W. Kim, J.-H. Ahn, H.-J. Ahn, J. Mater. Chem. A. 7 (27), 16239-16248 (2019).
[7] H. Kim, S.-W. Lee, K.-Y. Lee, J.-W. Park, H.-S. Ryu, K.-K. Cho, G.-B. Cho, K.-W. Kim, J.-H. Ahn, H.-J. Ahn, J. Nanosci. Nanotechnol. 18 (9), 6422-6426 (2018).
[8] H. Ye, L. Wang, S. Deng, X. Zeng, K. Nie, P.N. Duchesne, B. Wang, S. Liu, J. Zhou, F. Zhao, N. Han, P. Zhang, J. Zhong, X. Sun, Y. Li, Y. Li, J. Lu, Adv. Energy Mater. 7 (5), 1601602 (2016).
[9] C. Kim, I. Kim, H. Kim, M.K. Sadan, H. Yeo, G. Cho, J. Ahn, J. Ahn, H. Ahn, J. Mater. Chem. A. 6 (45), 22809-22818 (2018).
[10] M .K. Sadan, S.-H. Choi, H. Kim, C. Kim, G.-B. Cho, K.-W. Kim, N.S, Reddy, J.-H. Ahn, H.-J. Ahn, Ionics. 24, 753-761 (2018).
[11] D . Su, S. Dou, G. Wang, Nano Energy. 12, 88-95 (2015).
[12] D . Narsimulu, G. Nagaraju, S.C. Sekhar, B. Ramulu, J.S. Yu, Appl. Surf. Sci. 538, 148033 (2021).
[13] L. Wang, J. Wang, F. Guo, L. Ma, Y. Ren, T. Wu, P. Zuo, G. Yin, J. Wang, Nano Energy. 43, 184-191 (2018).
[14] S. Zhang, L. Yue, M. Wang, Y. Feng, Z. Li, J. Mi, Solid State Ion. 323, 105-111 (2018).
[15] X. Lu, F. Luo, Q. Xiong, H. Chi, H. Qin, Z. Ji, L. Tong, H. Pan, Mater. Res. Bull. 99, 45-51 (2018).
[16] Y.-N. Sun, M. Goktas, L. Zhao, P. Adelhelm, B.-H. Han, J. Colloid Interface Sci. 572, 122-132 (2020).
[17] A.K. Haridas, J. Heo, X. Li, H.-J. Ahn, X. Zhao, Z. Deng, M. Agostini, A. Matic, J.-H. Ahn, Chem. Eng. J. 385, 123453 (2020).
[18] M . K.Sadan, H. Kim, C. Kim, G.-B. Cho, N.S. Reddy, K.-K. Cho, T.-H. Nam, K.-W. Kim, J.-H. Ahn, H.-J. Ahn, J. Nanosci. Nanotechnol. 20 (11), 7119-7123 (2020).
[19] S. Men, H. Zheng, D. Ma, X. Huang, X. Kang, J. Energy Chem. 54, 124-130 (2021).
[20] H. Xie, Z. Wu, Z. Wang, N. Qin, Y. Li, Y. Cao, Z. Lu, J. Mater. Chem. A. 8 (7), 3606-3612 (2020).
[21] G . Cha, S. Mohajernia, N.T. Nguyen, A. Mazare, N. Denisov, I. Hwang, P. Schmuki, Adv. Energy Mater. 10 (6), 1903448 (2020).
[22] Y.C. Lu, C. Ma, J. Alvarado, T. Kidera, N. Dimov, Y.S. Meng, S. Okada, J. Power Sources. 204, 287-295 (2015).
[23] A.-T. Chien, S. Cho, Y. Joshi, S. Kumar, Polymer. 55 (26), 6896- 6905 (2014).
Go to article

Authors and Affiliations

Huihun Kim
1
ORCID: ORCID
Milan K. Sadan
1
ORCID: ORCID
Changhyeon Kim
1
ORCID: ORCID
Ga-In Choi
2
ORCID: ORCID
Minjun Seong
2
ORCID: ORCID
Kwon-Koo Cho
2
ORCID: ORCID
Ki-Won Kim
2
ORCID: ORCID
Jou-Hyeon Ahn
2
ORCID: ORCID
Hyo-Jun Ahn
1
ORCID: ORCID

  1. Gyeongsang National University, Research Institute for Green Energy Convergence Technology, Jinju, 52828, Republic of Korea
  2. Gyeongsang National University, Department of Materials Engineering and Convergence Technology, RIGET, Jinju, 52828, Republic of Korea
Download PDF Download RIS Download Bibtex

Abstract

Alternating current a.c. measurements enable to understand the physical and chemical processes occurring in semiconductor materials. Impedance spectroscopy has been successfully applied to study the responses of gas sensors based on metal oxides, such as TiO2, SnO2 and TiO2/SnO2 nanocomposites. This work is devoted to dynamic measurements of hydrogen sensor behaviour over the temperature range of 300–450◦C. Frequency dependence of the impedance signal gives evidence that 50 mol% TiO2/50 mol% SnO2 nanocomposites should be treated as resistive-type sensors. Temporal evolution of the response to 500 ppm H2 at 320◦C indicates a very short response time and much longer recovery.

Go to article

Authors and Affiliations

Bartłomiej Szafraniak
Anna Kusior
Marta Radecka
Katarzyna Zakrzewska
Download PDF Download RIS Download Bibtex

Abstract

TiO2 is one of the most widely used metal oxide semiconductors in the field of photocatalysis for the self-cleaning purpose to withdraw pollutants. Polyethylene glycol (PEG) is recommended as a stabilizer and booster during preparation of water-soluble TiO2. Preparation of SnO2/TiO2 thin film deposition on the surface of ceramic tile was carried out by the sol-gel spin coating method by adding different amount of PEG (0g, 0.2g, 0.4g, 0.6g, 0.8g) during the preparation of the sol precursor. The effects of PEG content and the annealing temperature on the phase composition, crystallite size and the hydrophilic properties of SnO2/TiO2 films were studied. The X-ray diffraction (XRD) spectra revealed different phases existed when the films were annealed at different annealing temperatures of 350°C, 550°C and 750°C with 0.4 g of PEG addition. The crystallite sizes of the films were measured using Scherrer equation. It shows crystallite size was dependent on crystal structure existed in the films. The films with mixed phases of brookite and rutile shows the smallest crystallite size. In order to measure the hydrophilicity properties of films, the water contact angles for each film with different content of PEG were measured. It can be observed that the water contact angle decreased with the increasing of the content of PEG. It shows the superhydrophilicity properties for the films with the 0.8 g of PEG annealed at 750°C. This demonstrates that the annealed temperature and the addition of PEG affect the phase composition and the hydrophilicity properties of the films.
Go to article

Authors and Affiliations

Dewi Suriyani Che Halin
1 2
ORCID: ORCID
A. Azliza
1 2
ORCID: ORCID
Kamrosni Abdul Razak
1 2
ORCID: ORCID
Mohd Mustafa Albakri Abdullah
1 2
ORCID: ORCID
Mohd Arif Anuar Mohd Salleh
1 2
ORCID: ORCID
Juyana A Wahab
1 2
ORCID: ORCID
V. Chobpattana
3
ORCID: ORCID
L. Kaczmarek
4
ORCID: ORCID
M. Nabiałek
5
ORCID: ORCID
B. Jeż
5
ORCID: ORCID

  1. Universiti Malaysia Perlis (UniMAP), Center of Excellence Geopolymer & Green Technology (CEGeoGTech), Perlis, Malaysia
  2. Universiti Malaysia Perlis (UniMAP), Faculty of Chemical Engineering Technology, Perlis Malaysia
  3. Rajamangala University of Technology Thanyaburi (RMUTT), Faculty of Engineering, Department of Materials and Metallurgical Engineering, Thailand
  4. Lodz University of Technology (TUL), Institute of Materials Science and Engineering,1/15, Stefanowskiego Str., 90-924 Lodz, Poland
  5. Czestochowa University of Technology, Department of Physics, 19 Armii Krajowej Av., 42-200 Czestochowa, Poland
Download PDF Download RIS Download Bibtex

Abstract

Different anchoring groups such as thiophene-2-acetic and malonic acid were investigated for synthesis of new photosensitizers. The new dyes (photosensitizers) were made pure and determined by various analytical techniques. The chemical structure of synthesized materials was certified by analytical studies. UV-Visible and fluorescence spectra revealed intense fluorescence and absorption for organic photosensitizers. The cyclic voltammetry results showed that the two photosensitizers were suitable for dye sensitized solar cell preparation. The work electrode was gathered using tin (IV) oxide nanoparticles in dye-sensitized solar cells structure. The new photosensitizers and tin (IV) oxide were used for photovoltaic devices preparation. The power conversion efficiency was obtained as about 4.12 and 4.29% for Dye 1 and Dye 2, respectively.

Go to article

Authors and Affiliations

J. Movahedi
H. Haratizadeh
N. Falah
M. Hosseinnezhad

This page uses 'cookies'. Learn more