Search results

Filters

  • Journals
  • Authors
  • Keywords
  • Date
  • Type

Search results

Number of results: 1
items per page: 25 50 75
Sort by:
Download PDF Download RIS Download Bibtex

Abstract

The sodium silicate sands hardened by microwave have the advantages of high strength, fast hardening speed and low residual strength with the lower addition of sodium silicate. However, the sodium ion in the sands will absorb moisture from the atmosphere, which would lead to lower storing strength, so the protection of a bonding bridge of sodium silicate between the sands is crucial. Methyl silicone oil is a cheap hydrophobic industrial raw material. The influence of the addition amount of methyl silicone oil modifier on compressive strength and moisture absorption of sodium silicate sands was studied in this work. The microscopic analysis of modified before and after sodium silicate sands has been carried on employing scanning electron microscopy(SEM) and energy spectrum analysis(EDS). The results showed that the strength of modified sodium silicate sands was significantly higher than that of unmodified sodium silicate sands, and the best addition of methyl silicone oil in the quantity of sodium silicate was 15%. It was also found that the bonding bridge of modified sodium silicate sands was the density and the adhesive film was smooth, and the methyl silicone oil was completely covered on the surface of the sodium silicate bonding bridge to protect it.
Go to article

Bibliography

[1] Stachowicz, M., Pałyga, Ł. & Kȩpowicz, D. (2020). Influence of automatic core shooting parameters in hot-box technology on the strength of sodium silicate olivine moulding sands. Archives of Foundry Engineering. 20(1), 67-72.
[2] Nowak, D.(2017).The impact of microwave penetration depth on the process of hardening the moulding sand with sodium silicate. Archives of Foundry Engineering. 17(4), 115-118.
[3] Gal, B., Granat, K. & Nowak, D. (2017). Effect of compaction degree on permittivity of water-glass containing moulding sand. Metalurgija. 56(1), 17-20.
[4] Kaźnica, N. & Zych, J. (2019). Indicator wso: a new parameter for characterization of protective coating efficiency against humidity. Journal of Materials Engineering and Performance. 28(7), 3960-3965.
[5] Bae, M.A., Lee, M.S. & Baek, J.H. (2020). The effect of the surface energy of water glass on the fluidity of sand. Journal of Korean Institute of Metals and Materials. 58(5), 319-325.
[6] Peng, Q.S., Wang, P.C., Huang, W., & Chen, H.B. (2020). The irradiation-induced grafting of nano-silica with methyl silicone oil. Polymer. 192(4), 122315.
[7] Stachowicz, M., Granat, K., & Payga. (2017). Influence of sand base preparation on properties of chromite moulding sands with sodium silicate hardened with selected methods. Archives of Metallurgy and Materials. 62(1), 379-383.
[8] Zhu, C. (2007). Recent advances in waterglass sand technologies. China Foundry. 4(1), 13-17.
[9] Huafang, W., Wenbang, G. & Jijun, L. (2014). Improve the humidity resistance of sodium silicate sands by ester-microwave composite hardening. Metalurgija. 53(4), 455-458.
[10] Masuda, Y., Tsubota, K., Ishii, K., Imakoma, H. & Ohmura, N. (2009). Drying rate and surface temperature in solidification of glass particle layer with inorganic binder by microwave drying. KAGAKU KOGAKU RONBUNSHU. 35(2), 229-231.
[11] Kosuge, K., Sunaga, M., Goda, R., Onodera, H. & Okane, T. (2018). Cure and collapse mechanism of inorganic mold using spherical artificial sand and water glass binder. Materials transactions. 59(11), 1784-1790.
[12] Zhang, Y.H., Liu, Z.Y., Liu, Z.C. & Yao, L.P. (2020). Mechanical properties of high-ductility cementitious composites with methyl silicone oil. Magazine of Concrete Research. 72(14), 747-756.
Go to article

Authors and Affiliations

Huafang Wang
1
ORCID: ORCID
Xiang Gao
1
Lei Yang
1
ORCID: ORCID
Wei He
1
Jijun Lu
1
ORCID: ORCID

  1. School of Mechanical Engineering and Automation, Wuhan Textile University, China

This page uses 'cookies'. Learn more